
/Users/jehodges/Documents/work/standards/W3C/webauthn/index-vgb-u2f-attestation-0d0fcea.txt,	Top	line:	1

THE_URL:file://localhost/Users/jehodges/documents/work/standards/W3C/WebAuthn/index-vgb-u2f-THE_URL:file://localhost/Users/jehodges/documents/work/standards/W3C/WebAuthn/index-vgb-u2f-
attestation-0d0fcea.htmlattestation-0d0fcea.htmlattestation-0d0fcea.htmlattestation-0d0fcea.html
THE_TITLE:Web	Authentication:	An	API	for	accessing	Scoped	Credentials	THE_TITLE:Web	Authentication:	An	API	for	accessing	Scoped	Credentials	
			W3C			W3C

Web	Authentication:	An	API	for	accessing	Scoped	CredentialsWeb	Authentication:	An	API	for	accessing	Scoped	Credentials

Editor's	Draft,	12	January	2017Editor's	Draft,	12	January	2017Editor's	Draft,	12	January	2017Editor's	Draft,	12	January	2017

			This	version:			This	version:
										https://w3c.github.io/webauthn/										https://w3c.github.io/webauthn/

			Latest	published	version:			Latest	published	version:
										https://www.w3.org/TR/webauthn/										https://www.w3.org/TR/webauthn/

			Previous	Versions:			Previous	Versions:
										https://www.w3.org/TR/2016/WD-webauthn-20161207/										https://www.w3.org/TR/2016/WD-webauthn-20161207/
										https://www.w3.org/TR/2016/WD-webauthn-20160928/										https://www.w3.org/TR/2016/WD-webauthn-20160928/
										https://www.w3.org/TR/2016/WD-webauthn-20160902/										https://www.w3.org/TR/2016/WD-webauthn-20160902/
										https://www.w3.org/TR/2016/WD-webauthn-20160531/										https://www.w3.org/TR/2016/WD-webauthn-20160531/

			Issue	Tracking:			Issue	Tracking:
										Github										Github

			Editors:			Editors:
										Vijay	Bharadwaj	(Microsoft)										Vijay	Bharadwaj	(Microsoft)
										Hubert	Le	Van	Gong	(PayPal)										Hubert	Le	Van	Gong	(PayPal)
										Dirk	Balfanz	(Google)										Dirk	Balfanz	(Google)
										Alexei	Czeskis	(Google)										Alexei	Czeskis	(Google)
										Arnar	Birgisson	(Google)										Arnar	Birgisson	(Google)
										Jeff	Hodges	(PayPal)										Jeff	Hodges	(PayPal)
										Michael	B.	Jones	(Microsoft)										Michael	B.	Jones	(Microsoft)
										Rolf	Lindemann	(Nok	Nok	Labs)										Rolf	Lindemann	(Nok	Nok	Labs)
										J.C.	Jones	(Mozilla)										J.C.	Jones	(Mozilla)

			Copyright		2017	W3C^	(MIT,	ERCIM,	Keio,	Beihang).	W3C	liability,			Copyright		2017	W3C^	(MIT,	ERCIM,	Keio,	Beihang).	W3C	liability,
			trademark	and	document	use	rules	apply.			trademark	and	document	use	rules	apply.
					__________________________________________________________________					__________________________________________________________________

AbstractAbstract

			This	specification	defines	an	API	enabling	the	creation	and	use	of			This	specification	defines	an	API	enabling	the	creation	and	use	of
			strong,	attested,	cryptographic	scoped	credentials	by	web	applications,			strong,	attested,	cryptographic	scoped	credentials	by	web	applications,
			for	the	purpose	of	strongly	authenticating	users.	Conceptually,	one	or			for	the	purpose	of	strongly	authenticating	users.	Conceptually,	one	or
			more	credentials,	each	scoped	to	a	given	Relying	Party,	are	created	and			more	credentials,	each	scoped	to	a	given	Relying	Party,	are	created	and
			stored	on	an	authenticator	by	the	user	agent	in	conjunction	with	the			stored	on	an	authenticator	by	the	user	agent	in	conjunction	with	the
			web	application.	The	user	agent	mediates	access	to	scoped	credentials			web	application.	The	user	agent	mediates	access	to	scoped	credentials
			in	order	to	preserve	user	privacy.	Authenticators	are	responsible	for			in	order	to	preserve	user	privacy.	Authenticators	are	responsible	for
			ensuring	that	no	operation	is	performed	without	user	consent.			ensuring	that	no	operation	is	performed	without	user	consent.
			Authenticators	provide	cryptographic	proof	of	their	properties	to			Authenticators	provide	cryptographic	proof	of	their	properties	to
			relying	parties	via	attestation.	This	specification	also	describes	the			relying	parties	via	attestation.	This	specification	also	describes	the
			functional	model	for	WebAuthn	conformant	authenticators,	including			functional	model	for	WebAuthn	conformant	authenticators,	including
			their	signature	and	attestation	functionality.			their	signature	and	attestation	functionality.

Status	of	this	documentStatus	of	this	document

			This	section	describes	the	status	of	this	document	at	the	time	of	its			This	section	describes	the	status	of	this	document	at	the	time	of	its
			publication.	Other	documents	may	supersede	this	document.	A	list	of			publication.	Other	documents	may	supersede	this	document.	A	list	of
			current	W3C	publications	and	the	latest	revision	of	this	technical			current	W3C	publications	and	the	latest	revision	of	this	technical
			report	can	be	found	in	the	W3C	technical	reports	index	at			report	can	be	found	in	the	W3C	technical	reports	index	at
			http://www.w3.org/TR/.			http://www.w3.org/TR/.

/Users/jehodges/Documents/work/standards/W3C/webauthn/index-vgb-u2f-attestation-dc90eab.txt,	Top	line:	1

THE_URL:file://localhost/Users/jehodges/documents/work/standards/W3C/WebAuthn/index-vgb-u2f-THE_URL:file://localhost/Users/jehodges/documents/work/standards/W3C/WebAuthn/index-vgb-u2f-
attestation-dc90eab.htmlattestation-dc90eab.htmlattestation-dc90eab.htmlattestation-dc90eab.html
THE_TITLE:Web	Authentication:	An	API	for	accessing	Scoped	Credentials	THE_TITLE:Web	Authentication:	An	API	for	accessing	Scoped	Credentials	
			W3C			W3C

Web	Authentication:	An	API	for	accessing	Scoped	CredentialsWeb	Authentication:	An	API	for	accessing	Scoped	Credentials

Editor's	Draft,	18	January	2017Editor's	Draft,	18	January	2017Editor's	Draft,	18	January	2017Editor's	Draft,	18	January	2017

			This	version:			This	version:
										https://w3c.github.io/webauthn/										https://w3c.github.io/webauthn/

			Latest	published	version:			Latest	published	version:
										https://www.w3.org/TR/webauthn/										https://www.w3.org/TR/webauthn/

			Previous	Versions:			Previous	Versions:
										https://www.w3.org/TR/2016/WD-webauthn-20161207/										https://www.w3.org/TR/2016/WD-webauthn-20161207/
										https://www.w3.org/TR/2016/WD-webauthn-20160928/										https://www.w3.org/TR/2016/WD-webauthn-20160928/
										https://www.w3.org/TR/2016/WD-webauthn-20160902/										https://www.w3.org/TR/2016/WD-webauthn-20160902/
										https://www.w3.org/TR/2016/WD-webauthn-20160531/										https://www.w3.org/TR/2016/WD-webauthn-20160531/

			Issue	Tracking:			Issue	Tracking:
										Github										Github

			Editors:			Editors:
										Vijay	Bharadwaj	(Microsoft)										Vijay	Bharadwaj	(Microsoft)
										Hubert	Le	Van	Gong	(PayPal)										Hubert	Le	Van	Gong	(PayPal)
										Dirk	Balfanz	(Google)										Dirk	Balfanz	(Google)
										Alexei	Czeskis	(Google)										Alexei	Czeskis	(Google)
										Arnar	Birgisson	(Google)										Arnar	Birgisson	(Google)
										Jeff	Hodges	(PayPal)										Jeff	Hodges	(PayPal)
										Michael	B.	Jones	(Microsoft)										Michael	B.	Jones	(Microsoft)
										Rolf	Lindemann	(Nok	Nok	Labs)										Rolf	Lindemann	(Nok	Nok	Labs)
										J.C.	Jones	(Mozilla)										J.C.	Jones	(Mozilla)

			Copyright		2017	W3C^	(MIT,	ERCIM,	Keio,	Beihang).	W3C	liability,			Copyright		2017	W3C^	(MIT,	ERCIM,	Keio,	Beihang).	W3C	liability,
			trademark	and	document	use	rules	apply.			trademark	and	document	use	rules	apply.
					__________________________________________________________________					__________________________________________________________________

AbstractAbstract

			This	specification	defines	an	API	enabling	the	creation	and	use	of			This	specification	defines	an	API	enabling	the	creation	and	use	of
			strong,	attested,	cryptographic	scoped	credentials	by	web	applications,			strong,	attested,	cryptographic	scoped	credentials	by	web	applications,
			for	the	purpose	of	strongly	authenticating	users.	Conceptually,	one	or			for	the	purpose	of	strongly	authenticating	users.	Conceptually,	one	or
			more	credentials,	each	scoped	to	a	given	Relying	Party,	are	created	and			more	credentials,	each	scoped	to	a	given	Relying	Party,	are	created	and
			stored	on	an	authenticator	by	the	user	agent	in	conjunction	with	the			stored	on	an	authenticator	by	the	user	agent	in	conjunction	with	the
			web	application.	The	user	agent	mediates	access	to	scoped	credentials			web	application.	The	user	agent	mediates	access	to	scoped	credentials
			in	order	to	preserve	user	privacy.	Authenticators	are	responsible	for			in	order	to	preserve	user	privacy.	Authenticators	are	responsible	for
			ensuring	that	no	operation	is	performed	without	user	consent.			ensuring	that	no	operation	is	performed	without	user	consent.
			Authenticators	provide	cryptographic	proof	of	their	properties	to			Authenticators	provide	cryptographic	proof	of	their	properties	to
			relying	parties	via	attestation.	This	specification	also	describes	the			relying	parties	via	attestation.	This	specification	also	describes	the
			functional	model	for	WebAuthn	conformant	authenticators,	including			functional	model	for	WebAuthn	conformant	authenticators,	including
			their	signature	and	attestation	functionality.			their	signature	and	attestation	functionality.

Status	of	this	documentStatus	of	this	document

			This	section	describes	the	status	of	this	document	at	the	time	of	its			This	section	describes	the	status	of	this	document	at	the	time	of	its
			publication.	Other	documents	may	supersede	this	document.	A	list	of			publication.	Other	documents	may	supersede	this	document.	A	list	of
			current	W3C	publications	and	the	latest	revision	of	this	technical			current	W3C	publications	and	the	latest	revision	of	this	technical
			report	can	be	found	in	the	W3C	technical	reports	index	at			report	can	be	found	in	the	W3C	technical	reports	index	at
			http://www.w3.org/TR/.			http://www.w3.org/TR/.

1/72



/Users/jehodges/Documents/work/standards/W3C/webauthn/index-vgb-u2f-attestation-0d0fcea.txt,	Top	line:	62

			This	document	was	published	by	the	Web	Authentication	Working	Group	as			This	document	was	published	by	the	Web	Authentication	Working	Group	as
			an	Editors'	Draft.	This	document	is	intended	to	become	a	W3C			an	Editors'	Draft.	This	document	is	intended	to	become	a	W3C
			Recommendation.	Feedback	and	comments	on	this	specification	are			Recommendation.	Feedback	and	comments	on	this	specification	are
			welcome.	Please	use	Github	issues.	Discussions	may	also	be	found	in	the			welcome.	Please	use	Github	issues.	Discussions	may	also	be	found	in	the
			public-webauthn@w3.org	archives.			public-webauthn@w3.org	archives.

			Publication	as	an	Editors'	Draft	does	not	imply	endorsement	by	the	W3C			Publication	as	an	Editors'	Draft	does	not	imply	endorsement	by	the	W3C
			Membership.	This	is	a	draft	document	and	may	be	updated,	replaced	or			Membership.	This	is	a	draft	document	and	may	be	updated,	replaced	or
			obsoleted	by	other	documents	at	any	time.	It	is	inappropriate	to	cite			obsoleted	by	other	documents	at	any	time.	It	is	inappropriate	to	cite
			this	document	as	other	than	work	in	progress.			this	document	as	other	than	work	in	progress.

			This	document	was	produced	by	a	group	operating	under	the	5	February			This	document	was	produced	by	a	group	operating	under	the	5	February
			2004	W3C	Patent	Policy.	W3C	maintains	a	public	list	of	any	patent			2004	W3C	Patent	Policy.	W3C	maintains	a	public	list	of	any	patent
			disclosures	made	in	connection	with	the	deliverables	of	the	group;	that			disclosures	made	in	connection	with	the	deliverables	of	the	group;	that
			page	also	includes	instructions	for	disclosing	a	patent.	An	individual			page	also	includes	instructions	for	disclosing	a	patent.	An	individual
			who	has	actual	knowledge	of	a	patent	which	the	individual	believes			who	has	actual	knowledge	of	a	patent	which	the	individual	believes
			contains	Essential	Claim(s)	must	disclose	the	information	in	accordance			contains	Essential	Claim(s)	must	disclose	the	information	in	accordance
			with	section	6	of	the	W3C	Patent	Policy.			with	section	6	of	the	W3C	Patent	Policy.

			This	document	is	governed	by	the	1	September	2015	W3C	Process	Document.			This	document	is	governed	by	the	1	September	2015	W3C	Process	Document.

Table	of	ContentsTable	of	Contents

				1.	1	Introduction				1.	1	Introduction
									1.	1.1	Use	Cases									1.	1.1	Use	Cases
														1.	1.1.1	Registration														1.	1.1.1	Registration
														2.	1.1.2	Authentication														2.	1.1.2	Authentication
														3.	1.1.3	Other	use	cases	and	configurations														3.	1.1.3	Other	use	cases	and	configurations
				2.	2	Conformance				2.	2	Conformance
									1.	2.1	Dependencies									1.	2.1	Dependencies
				3.	3	Terminology				3.	3	Terminology
				4.	4	Web	Authentication	API				4.	4	Web	Authentication	API
									1.	4.1	WebAuthentication	Interface									1.	4.1	WebAuthentication	Interface
														1.	4.1.1	Create	a	new	credential	(makeCredential()	method)														1.	4.1.1	Create	a	new	credential	(makeCredential()	method)
														2.	4.1.2	Use	an	existing	credential	(getAssertion()	method)														2.	4.1.2	Use	an	existing	credential	(getAssertion()	method)
									2.	4.2	Information	about	Scoped	Credential	(interface									2.	4.2	Information	about	Scoped	Credential	(interface
												ScopedCredentialInfo)												ScopedCredentialInfo)
									3.	4.3	User	Account	Information	(dictionary	Account)									3.	4.3	User	Account	Information	(dictionary	Account)
									4.	4.4	Parameters	for	Credential	Generation	(dictionary									4.	4.4	Parameters	for	Credential	Generation	(dictionary
												ScopedCredentialParameters)												ScopedCredentialParameters)
									5.	4.5	Additional	options	for	Credential	Generation	(dictionary									5.	4.5	Additional	options	for	Credential	Generation	(dictionary
												ScopedCredentialOptions)												ScopedCredentialOptions)
														1.	4.5.1	Credential	Attachment	enumeration	(enum	Attachment)														1.	4.5.1	Credential	Attachment	enumeration	(enum	Attachment)
									6.	4.6	Web	Authentication	Assertion	(interface									6.	4.6	Web	Authentication	Assertion	(interface
												AuthenticationAssertion)												AuthenticationAssertion)
									7.	4.7	Additional	options	for	Assertion	Generation	(dictionary									7.	4.7	Additional	options	for	Assertion	Generation	(dictionary
												AssertionOptions)												AssertionOptions)
									8.	4.8	Authentication	Assertion	Extensions	(dictionary									8.	4.8	Authentication	Assertion	Extensions	(dictionary
												AuthenticationExtensions)												AuthenticationExtensions)
									9.	4.9	Supporting	Data	Structures									9.	4.9	Supporting	Data	Structures
														1.	4.9.1	Client	data	used	in	WebAuthn	signatures	(dictionary														1.	4.9.1	Client	data	used	in	WebAuthn	signatures	(dictionary
																	ClientData)																	ClientData)
														2.	4.9.2	Credential	Type	enumeration	(enum														2.	4.9.2	Credential	Type	enumeration	(enum
																	ScopedCredentialType)																	ScopedCredentialType)
														3.	4.9.3	Unique	Identifier	for	Credential	(interface														3.	4.9.3	Unique	Identifier	for	Credential	(interface
																	ScopedCredential)																	ScopedCredential)
														4.	4.9.4	Credential	Descriptor	(dictionary														4.	4.9.4	Credential	Descriptor	(dictionary
																	ScopedCredentialDescriptor)																	ScopedCredentialDescriptor)
														5.	4.9.5	Credential	Transport	enumeration	(enum														5.	4.9.5	Credential	Transport	enumeration	(enum
																	ExternalTransport)																	ExternalTransport)
														6.	4.9.6	Cryptographic	Algorithm	Identifier	(type														6.	4.9.6	Cryptographic	Algorithm	Identifier	(type
																	AlgorithmIdentifier)																	AlgorithmIdentifier)

/Users/jehodges/Documents/work/standards/W3C/webauthn/index-vgb-u2f-attestation-dc90eab.txt,	Top	line:	62

			This	document	was	published	by	the	Web	Authentication	Working	Group	as			This	document	was	published	by	the	Web	Authentication	Working	Group	as
			an	Editors'	Draft.	This	document	is	intended	to	become	a	W3C			an	Editors'	Draft.	This	document	is	intended	to	become	a	W3C
			Recommendation.	Feedback	and	comments	on	this	specification	are			Recommendation.	Feedback	and	comments	on	this	specification	are
			welcome.	Please	use	Github	issues.	Discussions	may	also	be	found	in	the			welcome.	Please	use	Github	issues.	Discussions	may	also	be	found	in	the
			public-webauthn@w3.org	archives.			public-webauthn@w3.org	archives.

			Publication	as	an	Editors'	Draft	does	not	imply	endorsement	by	the	W3C			Publication	as	an	Editors'	Draft	does	not	imply	endorsement	by	the	W3C
			Membership.	This	is	a	draft	document	and	may	be	updated,	replaced	or			Membership.	This	is	a	draft	document	and	may	be	updated,	replaced	or
			obsoleted	by	other	documents	at	any	time.	It	is	inappropriate	to	cite			obsoleted	by	other	documents	at	any	time.	It	is	inappropriate	to	cite
			this	document	as	other	than	work	in	progress.			this	document	as	other	than	work	in	progress.

			This	document	was	produced	by	a	group	operating	under	the	5	February			This	document	was	produced	by	a	group	operating	under	the	5	February
			2004	W3C	Patent	Policy.	W3C	maintains	a	public	list	of	any	patent			2004	W3C	Patent	Policy.	W3C	maintains	a	public	list	of	any	patent
			disclosures	made	in	connection	with	the	deliverables	of	the	group;	that			disclosures	made	in	connection	with	the	deliverables	of	the	group;	that
			page	also	includes	instructions	for	disclosing	a	patent.	An	individual			page	also	includes	instructions	for	disclosing	a	patent.	An	individual
			who	has	actual	knowledge	of	a	patent	which	the	individual	believes			who	has	actual	knowledge	of	a	patent	which	the	individual	believes
			contains	Essential	Claim(s)	must	disclose	the	information	in	accordance			contains	Essential	Claim(s)	must	disclose	the	information	in	accordance
			with	section	6	of	the	W3C	Patent	Policy.			with	section	6	of	the	W3C	Patent	Policy.

			This	document	is	governed	by	the	1	September	2015	W3C	Process	Document.			This	document	is	governed	by	the	1	September	2015	W3C	Process	Document.

Table	of	ContentsTable	of	Contents

				1.	1	Introduction				1.	1	Introduction
									1.	1.1	Use	Cases									1.	1.1	Use	Cases
														1.	1.1.1	Registration														1.	1.1.1	Registration
														2.	1.1.2	Authentication														2.	1.1.2	Authentication
														3.	1.1.3	Other	use	cases	and	configurations														3.	1.1.3	Other	use	cases	and	configurations
				2.	2	Conformance				2.	2	Conformance
									1.	2.1	Dependencies									1.	2.1	Dependencies
				3.	3	Terminology				3.	3	Terminology
				4.	4	Web	Authentication	API				4.	4	Web	Authentication	API
									1.	4.1	WebAuthentication	Interface									1.	4.1	WebAuthentication	Interface
														1.	4.1.1	Create	a	new	credential	(makeCredential()	method)														1.	4.1.1	Create	a	new	credential	(makeCredential()	method)
														2.	4.1.2	Use	an	existing	credential	(getAssertion()	method)														2.	4.1.2	Use	an	existing	credential	(getAssertion()	method)
									2.	4.2	Information	about	Scoped	Credential	(interface									2.	4.2	Information	about	Scoped	Credential	(interface
												ScopedCredentialInfo)												ScopedCredentialInfo)
									3.	4.3	User	Account	Information	(dictionary	Account)									3.	4.3	User	Account	Information	(dictionary	Account)
									4.	4.4	Parameters	for	Credential	Generation	(dictionary									4.	4.4	Parameters	for	Credential	Generation	(dictionary
												ScopedCredentialParameters)												ScopedCredentialParameters)
									5.	4.5	Additional	options	for	Credential	Generation	(dictionary									5.	4.5	Additional	options	for	Credential	Generation	(dictionary
												ScopedCredentialOptions)												ScopedCredentialOptions)
														1.	4.5.1	Credential	Attachment	enumeration	(enum	Attachment)														1.	4.5.1	Credential	Attachment	enumeration	(enum	Attachment)
									6.	4.6	Web	Authentication	Assertion	(interface									6.	4.6	Web	Authentication	Assertion	(interface
												AuthenticationAssertion)												AuthenticationAssertion)
									7.	4.7	Additional	options	for	Assertion	Generation	(dictionary									7.	4.7	Additional	options	for	Assertion	Generation	(dictionary
												AssertionOptions)												AssertionOptions)
									8.	4.8	Authentication	Assertion	Extensions	(dictionary									8.	4.8	Authentication	Assertion	Extensions	(dictionary
												AuthenticationExtensions)												AuthenticationExtensions)
									9.	4.9	Supporting	Data	Structures									9.	4.9	Supporting	Data	Structures
														1.	4.9.1	Client	data	used	in	WebAuthn	signatures	(dictionary														1.	4.9.1	Client	data	used	in	WebAuthn	signatures	(dictionary
																	ClientData)																	ClientData)
														2.	4.9.2	Credential	Type	enumeration	(enum														2.	4.9.2	Credential	Type	enumeration	(enum
																	ScopedCredentialType)																	ScopedCredentialType)
														3.	4.9.3	Unique	Identifier	for	Credential	(interface														3.	4.9.3	Unique	Identifier	for	Credential	(interface
																	ScopedCredential)																	ScopedCredential)
														4.	4.9.4	Credential	Descriptor	(dictionary														4.	4.9.4	Credential	Descriptor	(dictionary
																	ScopedCredentialDescriptor)																	ScopedCredentialDescriptor)
														5.	4.9.5	Credential	Transport	enumeration	(enum														5.	4.9.5	Credential	Transport	enumeration	(enum
																	ExternalTransport)																	ExternalTransport)
														6.	4.9.6	Cryptographic	Algorithm	Identifier	(type														6.	4.9.6	Cryptographic	Algorithm	Identifier	(type
																	AlgorithmIdentifier)																	AlgorithmIdentifier)

2/72



/Users/jehodges/Documents/work/standards/W3C/webauthn/index-vgb-u2f-attestation-0d0fcea.txt,	Top	line:	124

				5.	5	WebAuthn	Authenticator	model				5.	5	WebAuthn	Authenticator	model
									1.	5.1	Authenticator	operations									1.	5.1	Authenticator	operations
														1.	5.1.1	The	authenticatorMakeCredential	operation														1.	5.1.1	The	authenticatorMakeCredential	operation
														2.	5.1.2	The	authenticatorGetAssertion	operation														2.	5.1.2	The	authenticatorGetAssertion	operation
														3.	5.1.3	The	authenticatorCancel	operation														3.	5.1.3	The	authenticatorCancel	operation
									2.	5.2	Signature	Format									2.	5.2	Signature	Format
														1.	5.2.1	Authenticator	data														1.	5.2.1	Authenticator	data
														2.	5.2.2	Attestation	data														2.	5.2.2	Attestation	data
														3.	5.2.3	Generating	a	signature														3.	5.2.3	Generating	a	signature
														4.	5.2.4	Verifying	a	signature														4.	5.2.4	Verifying	a	signature
									3.	5.3	Credential	Attestation									3.	5.3	Credential	Attestation
														1.	5.3.1	Attestation	Statement	Formats														1.	5.3.1	Attestation	Statement	Formats
														2.	5.3.2	Attestation	Types														2.	5.3.2	Attestation	Types
														3.	5.3.3	Generating	an	Attestation	Object														3.	5.3.3	Generating	an	Attestation	Object
														4.	5.3.4	Security	Considerations														4.	5.3.4	Security	Considerations
																			1.	5.3.4.1	Privacy																			1.	5.3.4.1	Privacy
																			2.	5.3.4.2	Attestation	Certificate	and	Attestation																			2.	5.3.4.2	Attestation	Certificate	and	Attestation
																						Certificate	CA	Compromise																						Certificate	CA	Compromise
																			3.	5.3.4.3	Attestation	Certificate	Hierarchy																			3.	5.3.4.3	Attestation	Certificate	Hierarchy
				6.	6	Relying	Party	Operations				6.	6	Relying	Party	Operations
									1.	6.1	Registering	a	new	credential									1.	6.1	Registering	a	new	credential
									2.	6.2	Verifying	an	authentication	assertion									2.	6.2	Verifying	an	authentication	assertion
				7.	7	Defined	Attestation	Statement	Formats				7.	7	Defined	Attestation	Statement	Formats
									1.	7.1	Attestation	Format	Identifiers									1.	7.1	Attestation	Format	Identifiers
									2.	7.2	Packed	Attestation	Statement	Format									2.	7.2	Packed	Attestation	Statement	Format
														1.	7.2.1	Packed	attestation	statement	certificate														1.	7.2.1	Packed	attestation	statement	certificate
																	requirements																	requirements
									3.	7.3	TPM	Attestation	Statement	Format									3.	7.3	TPM	Attestation	Statement	Format
														1.	7.3.1	TPM	attestation	statement	certificate	requirements														1.	7.3.1	TPM	attestation	statement	certificate	requirements
									4.	7.4	Android	Key	Attestation	Statement	Format									4.	7.4	Android	Key	Attestation	Statement	Format
									5.	7.5	Android	SafetyNet	Attestation	Statement	Format									5.	7.5	Android	SafetyNet	Attestation	Statement	Format
									6.	7.6	FIDO	U2F	Attestation	Statement	Format									6.	7.6	FIDO	U2F	Attestation	Statement	Format
				8.	8	WebAuthn	Extensions				8.	8	WebAuthn	Extensions
									1.	8.1	Extension	Identifiers									1.	8.1	Extension	Identifiers
									2.	8.2	Defining	extensions									2.	8.2	Defining	extensions
									3.	8.3	Extending	request	parameters									3.	8.3	Extending	request	parameters
									4.	8.4	Extending	client	processing									4.	8.4	Extending	client	processing
									5.	8.5	Extending	authenticator	processing									5.	8.5	Extending	authenticator	processing
									6.	8.6	Example	extension									6.	8.6	Example	extension
				9.	9	Pre-defined	extensions				9.	9	Pre-defined	extensions
									1.	9.1	FIDO	AppId									1.	9.1	FIDO	AppId
									2.	9.2	Transaction	authorization									2.	9.2	Transaction	authorization
									3.	9.3	Authenticator	Selection	Extension									3.	9.3	Authenticator	Selection	Extension
									4.	9.4	SupportedExtensions	Extension									4.	9.4	SupportedExtensions	Extension
									5.	9.5	User	Verification	Index	(UVI)	Extension									5.	9.5	User	Verification	Index	(UVI)	Extension
									6.	9.6	Location	Extension									6.	9.6	Location	Extension
									7.	9.7	User	Verification	Mode	(UVM)	Extension									7.	9.7	User	Verification	Mode	(UVM)	Extension
			10.	10	IANA	Considerations			10.	10	IANA	Considerations
			11.	11	Sample	scenarios			11.	11	Sample	scenarios
									1.	11.1	Registration									1.	11.1	Registration
									2.	11.2	Authentication									2.	11.2	Authentication
									3.	11.3	Decommissioning									3.	11.3	Decommissioning
			12.	12	Acknowledgements			12.	12	Acknowledgements
			13.	Index			13.	Index
									1.	Terms	defined	by	this	specification									1.	Terms	defined	by	this	specification
									2.	Terms	defined	by	reference									2.	Terms	defined	by	reference
			14.	References			14.	References
									1.	Normative	References									1.	Normative	References
									2.	Informative	References									2.	Informative	References
			15.	IDL	Index			15.	IDL	Index

1.	Introduction1.	Introduction

/Users/jehodges/Documents/work/standards/W3C/webauthn/index-vgb-u2f-attestation-dc90eab.txt,	Top	line:	124

				5.	5	WebAuthn	Authenticator	model				5.	5	WebAuthn	Authenticator	model
									1.	5.1	Authenticator	operations									1.	5.1	Authenticator	operations
														1.	5.1.1	The	authenticatorMakeCredential	operation														1.	5.1.1	The	authenticatorMakeCredential	operation
														2.	5.1.2	The	authenticatorGetAssertion	operation														2.	5.1.2	The	authenticatorGetAssertion	operation
														3.	5.1.3	The	authenticatorCancel	operation														3.	5.1.3	The	authenticatorCancel	operation
									2.	5.2	Signature	Format									2.	5.2	Signature	Format
														1.	5.2.1	Authenticator	data														1.	5.2.1	Authenticator	data
														2.	5.2.2	Attestation	data														2.	5.2.2	Attestation	data
														3.	5.2.3	Generating	a	signature														3.	5.2.3	Generating	a	signature
														4.	5.2.4	Verifying	a	signature														4.	5.2.4	Verifying	a	signature
									3.	5.3	Credential	Attestation									3.	5.3	Credential	Attestation
														1.	5.3.1	Attestation	Statement	Formats														1.	5.3.1	Attestation	Statement	Formats
														2.	5.3.2	Attestation	Types														2.	5.3.2	Attestation	Types
														3.	5.3.3	Generating	an	Attestation	Object														3.	5.3.3	Generating	an	Attestation	Object
														4.	5.3.4	Security	Considerations														4.	5.3.4	Security	Considerations
																			1.	5.3.4.1	Privacy																			1.	5.3.4.1	Privacy
																			2.	5.3.4.2	Attestation	Certificate	and	Attestation																			2.	5.3.4.2	Attestation	Certificate	and	Attestation
																						Certificate	CA	Compromise																						Certificate	CA	Compromise
																			3.	5.3.4.3	Attestation	Certificate	Hierarchy																			3.	5.3.4.3	Attestation	Certificate	Hierarchy
				6.	6	Relying	Party	Operations				6.	6	Relying	Party	Operations
									1.	6.1	Registering	a	new	credential									1.	6.1	Registering	a	new	credential
									2.	6.2	Verifying	an	authentication	assertion									2.	6.2	Verifying	an	authentication	assertion
				7.	7	Defined	Attestation	Statement	Formats				7.	7	Defined	Attestation	Statement	Formats
									1.	7.1	Attestation	Format	Identifiers									1.	7.1	Attestation	Format	Identifiers
									2.	7.2	Packed	Attestation	Statement	Format									2.	7.2	Packed	Attestation	Statement	Format
														1.	7.2.1	Packed	attestation	statement	certificate														1.	7.2.1	Packed	attestation	statement	certificate
																	requirements																	requirements
									3.	7.3	TPM	Attestation	Statement	Format									3.	7.3	TPM	Attestation	Statement	Format
														1.	7.3.1	TPM	attestation	statement	certificate	requirements														1.	7.3.1	TPM	attestation	statement	certificate	requirements
									4.	7.4	Android	Key	Attestation	Statement	Format									4.	7.4	Android	Key	Attestation	Statement	Format
									5.	7.5	Android	SafetyNet	Attestation	Statement	Format									5.	7.5	Android	SafetyNet	Attestation	Statement	Format
									6.	7.6	FIDO	U2F	Attestation	Statement	Format									6.	7.6	FIDO	U2F	Attestation	Statement	Format
				8.	8	WebAuthn	Extensions				8.	8	WebAuthn	Extensions
									1.	8.1	Extension	Identifiers									1.	8.1	Extension	Identifiers
									2.	8.2	Defining	extensions									2.	8.2	Defining	extensions
									3.	8.3	Extending	request	parameters									3.	8.3	Extending	request	parameters
									4.	8.4	Extending	client	processing									4.	8.4	Extending	client	processing
									5.	8.5	Extending	authenticator	processing									5.	8.5	Extending	authenticator	processing
									6.	8.6	Example	extension									6.	8.6	Example	extension
				9.	9	Pre-defined	extensions				9.	9	Pre-defined	extensions
									1.	9.1	FIDO	AppId									1.	9.1	FIDO	AppId
									2.	9.2	Transaction	authorization									2.	9.2	Transaction	authorization
									3.	9.3	Authenticator	Selection	Extension									3.	9.3	Authenticator	Selection	Extension
									4.	9.4	SupportedExtensions	Extension									4.	9.4	SupportedExtensions	Extension
									5.	9.5	User	Verification	Index	(UVI)	Extension									5.	9.5	User	Verification	Index	(UVI)	Extension
									6.	9.6	Location	Extension									6.	9.6	Location	Extension
									7.	9.7	User	Verification	Mode	(UVM)	Extension									7.	9.7	User	Verification	Mode	(UVM)	Extension
			10.	10	IANA	Considerations			10.	10	IANA	Considerations
			11.	11	Sample	scenarios			11.	11	Sample	scenarios
									1.	11.1	Registration									1.	11.1	Registration
									2.	11.2	Authentication									2.	11.2	Authentication
									3.	11.3	Decommissioning									3.	11.3	Decommissioning
			12.	12	Acknowledgements			12.	12	Acknowledgements
			13.	Index			13.	Index
									1.	Terms	defined	by	this	specification									1.	Terms	defined	by	this	specification
									2.	Terms	defined	by	reference									2.	Terms	defined	by	reference
			14.	References			14.	References
									1.	Normative	References									1.	Normative	References
									2.	Informative	References									2.	Informative	References
			15.	IDL	Index			15.	IDL	Index

1.	Introduction1.	Introduction
3/72



/Users/jehodges/Documents/work/standards/W3C/webauthn/index-vgb-u2f-attestation-0d0fcea.txt,	Top	line:	186

			This	section	is	not	normative.			This	section	is	not	normative.

			This	specification	defines	an	API	enabling	the	creation	and	use	of			This	specification	defines	an	API	enabling	the	creation	and	use	of
			strong,	attested,	cryptographic	scoped	credentials	by	web	applications,			strong,	attested,	cryptographic	scoped	credentials	by	web	applications,
			for	the	purpose	of	strongly	authenticating	users.	A	scoped	credential			for	the	purpose	of	strongly	authenticating	users.	A	scoped	credential
			is	created	and	stored	by	an	authenticator	at	the	behest	of	a	Relying			is	created	and	stored	by	an	authenticator	at	the	behest	of	a	Relying
			Party,	subject	to	user	consent.	Subsequently,	the	scoped	credential	can			Party,	subject	to	user	consent.	Subsequently,	the	scoped	credential	can
			only	be	accessed	by	origins	belonging	to	that	Relying	Party.	This			only	be	accessed	by	origins	belonging	to	that	Relying	Party.	This
			scoping	is	enforced	jointly	by	conforming	User	Agents	and			scoping	is	enforced	jointly	by	conforming	User	Agents	and
			authenticators.	Additionally,	privacy	across	Relying	Parties	is			authenticators.	Additionally,	privacy	across	Relying	Parties	is
			maintained;	Relying	Parties	are	not	able	to	detect	any	properties,	or			maintained;	Relying	Parties	are	not	able	to	detect	any	properties,	or
			even	the	existence,	of	credentials	scoped	to	other	Relying	Parties.			even	the	existence,	of	credentials	scoped	to	other	Relying	Parties.

			Relying	Parties	employ	the	Web	Authentication	API	during	two	distinct,			Relying	Parties	employ	the	Web	Authentication	API	during	two	distinct,
			but	related,	ceremonies	involving	a	user.	The	first	is	Registration,			but	related,	ceremonies	involving	a	user.	The	first	is	Registration,
			where	a	scoped	credential	is	created	on	an	authenticator,	and			where	a	scoped	credential	is	created	on	an	authenticator,	and
			associated	by	a	Relying	Party	with	the	present	user's	account	(the			associated	by	a	Relying	Party	with	the	present	user's	account	(the
			account	may	already	exist	or	may	be	created	at	this	time).	The	second			account	may	already	exist	or	may	be	created	at	this	time).	The	second
			is	Authentication,	where	the	Relying	Party	is	presented	with	an			is	Authentication,	where	the	Relying	Party	is	presented	with	an
			Authentication	Assertion	proving	the	presence	and	consent	of	the	user			Authentication	Assertion	proving	the	presence	and	consent	of	the	user
			who	registered	the	scoped	credential.	Functionally,	the	Web			who	registered	the	scoped	credential.	Functionally,	the	Web
			Authentication	API	comprises	two	methods	(along	with	associated	data			Authentication	API	comprises	two	methods	(along	with	associated	data
			structures):	makeCredential()	and	getAssertion().	The	former	is	used			structures):	makeCredential()	and	getAssertion().	The	former	is	used
			during	Registration	and	the	latter	during	Authentication.			during	Registration	and	the	latter	during	Authentication.

			Broadly,	compliant	authenticators	protect	scoped	credentials,	and			Broadly,	compliant	authenticators	protect	scoped	credentials,	and
			interact	with	user	agents	to	implement	the	Web	Authentication	API.	Some			interact	with	user	agents	to	implement	the	Web	Authentication	API.	Some
			authenticators	may	run	on	the	same	computing	device	(e.g.,	smart	phone,			authenticators	may	run	on	the	same	computing	device	(e.g.,	smart	phone,
			tablet,	desktop	PC)	as	the	user	agent	is	running	on.	For	instance,	such			tablet,	desktop	PC)	as	the	user	agent	is	running	on.	For	instance,	such
			an	authenticator	might	consist	of	a	Trusted	Execution	Environment	(TEE)			an	authenticator	might	consist	of	a	Trusted	Execution	Environment	(TEE)
			applet,	a	Trusted	Platform	Module	(TPM),	or	a	Secure	Element	(SE)			applet,	a	Trusted	Platform	Module	(TPM),	or	a	Secure	Element	(SE)
			integrated	into	the	computing	device	in	conjunction	with	some	means	for			integrated	into	the	computing	device	in	conjunction	with	some	means	for
			user	verification,	along	with	appropriate	platform	software	to	mediate			user	verification,	along	with	appropriate	platform	software	to	mediate
			access	to	these	components'	functionality.	Other	authenticators	may			access	to	these	components'	functionality.	Other	authenticators	may
			operate	autonomously	from	the	computing	device	running	the	user	agent,			operate	autonomously	from	the	computing	device	running	the	user	agent,
			and	be	accessed	over	a	transport	such	as	Universal	Serial	Bus	(USB),			and	be	accessed	over	a	transport	such	as	Universal	Serial	Bus	(USB),
			Bluetooth	Low	Energy	(BLE)	or	Near	Field	Communications	(NFC).			Bluetooth	Low	Energy	(BLE)	or	Near	Field	Communications	(NFC).

		1.1.	Use	Cases		1.1.	Use	Cases

			The	below	use	case	scenarios	illustrate	use	of	two	very	different	types			The	below	use	case	scenarios	illustrate	use	of	two	very	different	types
			of	authenticators,	as	well	as	outline	further	scenarios.	Additional			of	authenticators,	as	well	as	outline	further	scenarios.	Additional
			scenarios,	including	sample	code,	are	given	later	in	11	Sample			scenarios,	including	sample	code,	are	given	later	in	11	Sample
			scenarios.			scenarios.

				1.1.1.	Registration				1.1.1.	Registration

					*	On	a	phone:					*	On	a	phone:
										+	User	navigates	to	example.com	in	a	browser	and	signs	in	to	an										+	User	navigates	to	example.com	in	a	browser	and	signs	in	to	an
												existing	account	using	whatever	method	they	have	been	using												existing	account	using	whatever	method	they	have	been	using
												(possibly	a	legacy	method	such	as	a	password),	or	creates	a												(possibly	a	legacy	method	such	as	a	password),	or	creates	a
												new	account.												new	account.
										+	The	phone	prompts,	"Do	you	want	to	register	this	device	with										+	The	phone	prompts,	"Do	you	want	to	register	this	device	with
												example.com?"												example.com?"
										+	User	agrees.										+	User	agrees.
										+	The	phone	prompts	the	user	for	a	previously	configured										+	The	phone	prompts	the	user	for	a	previously	configured
												authorization	gesture	(PIN,	biometric,	etc.);	the	user												authorization	gesture	(PIN,	biometric,	etc.);	the	user
												provides	this.												provides	this.
										+	Website	shows	message,	"Registration	complete."										+	Website	shows	message,	"Registration	complete."

				1.1.2.	Authentication				1.1.2.	Authentication

/Users/jehodges/Documents/work/standards/W3C/webauthn/index-vgb-u2f-attestation-dc90eab.txt,	Top	line:	186

			This	section	is	not	normative.			This	section	is	not	normative.

			This	specification	defines	an	API	enabling	the	creation	and	use	of			This	specification	defines	an	API	enabling	the	creation	and	use	of
			strong,	attested,	cryptographic	scoped	credentials	by	web	applications,			strong,	attested,	cryptographic	scoped	credentials	by	web	applications,
			for	the	purpose	of	strongly	authenticating	users.	A	scoped	credential			for	the	purpose	of	strongly	authenticating	users.	A	scoped	credential
			is	created	and	stored	by	an	authenticator	at	the	behest	of	a	Relying			is	created	and	stored	by	an	authenticator	at	the	behest	of	a	Relying
			Party,	subject	to	user	consent.	Subsequently,	the	scoped	credential	can			Party,	subject	to	user	consent.	Subsequently,	the	scoped	credential	can
			only	be	accessed	by	origins	belonging	to	that	Relying	Party.	This			only	be	accessed	by	origins	belonging	to	that	Relying	Party.	This
			scoping	is	enforced	jointly	by	conforming	User	Agents	and			scoping	is	enforced	jointly	by	conforming	User	Agents	and
			authenticators.	Additionally,	privacy	across	Relying	Parties	is			authenticators.	Additionally,	privacy	across	Relying	Parties	is
			maintained;	Relying	Parties	are	not	able	to	detect	any	properties,	or			maintained;	Relying	Parties	are	not	able	to	detect	any	properties,	or
			even	the	existence,	of	credentials	scoped	to	other	Relying	Parties.			even	the	existence,	of	credentials	scoped	to	other	Relying	Parties.

			Relying	Parties	employ	the	Web	Authentication	API	during	two	distinct,			Relying	Parties	employ	the	Web	Authentication	API	during	two	distinct,
			but	related,	ceremonies	involving	a	user.	The	first	is	Registration,			but	related,	ceremonies	involving	a	user.	The	first	is	Registration,
			where	a	scoped	credential	is	created	on	an	authenticator,	and			where	a	scoped	credential	is	created	on	an	authenticator,	and
			associated	by	a	Relying	Party	with	the	present	user's	account	(the			associated	by	a	Relying	Party	with	the	present	user's	account	(the
			account	may	already	exist	or	may	be	created	at	this	time).	The	second			account	may	already	exist	or	may	be	created	at	this	time).	The	second
			is	Authentication,	where	the	Relying	Party	is	presented	with	an			is	Authentication,	where	the	Relying	Party	is	presented	with	an
			Authentication	Assertion	proving	the	presence	and	consent	of	the	user			Authentication	Assertion	proving	the	presence	and	consent	of	the	user
			who	registered	the	scoped	credential.	Functionally,	the	Web			who	registered	the	scoped	credential.	Functionally,	the	Web
			Authentication	API	comprises	two	methods	(along	with	associated	data			Authentication	API	comprises	two	methods	(along	with	associated	data
			structures):	makeCredential()	and	getAssertion().	The	former	is	used			structures):	makeCredential()	and	getAssertion().	The	former	is	used
			during	Registration	and	the	latter	during	Authentication.			during	Registration	and	the	latter	during	Authentication.

			Broadly,	compliant	authenticators	protect	scoped	credentials,	and			Broadly,	compliant	authenticators	protect	scoped	credentials,	and
			interact	with	user	agents	to	implement	the	Web	Authentication	API.	Some			interact	with	user	agents	to	implement	the	Web	Authentication	API.	Some
			authenticators	may	run	on	the	same	computing	device	(e.g.,	smart	phone,			authenticators	may	run	on	the	same	computing	device	(e.g.,	smart	phone,
			tablet,	desktop	PC)	as	the	user	agent	is	running	on.	For	instance,	such			tablet,	desktop	PC)	as	the	user	agent	is	running	on.	For	instance,	such
			an	authenticator	might	consist	of	a	Trusted	Execution	Environment	(TEE)			an	authenticator	might	consist	of	a	Trusted	Execution	Environment	(TEE)
			applet,	a	Trusted	Platform	Module	(TPM),	or	a	Secure	Element	(SE)			applet,	a	Trusted	Platform	Module	(TPM),	or	a	Secure	Element	(SE)
			integrated	into	the	computing	device	in	conjunction	with	some	means	for			integrated	into	the	computing	device	in	conjunction	with	some	means	for
			user	verification,	along	with	appropriate	platform	software	to	mediate			user	verification,	along	with	appropriate	platform	software	to	mediate
			access	to	these	components'	functionality.	Other	authenticators	may			access	to	these	components'	functionality.	Other	authenticators	may
			operate	autonomously	from	the	computing	device	running	the	user	agent,			operate	autonomously	from	the	computing	device	running	the	user	agent,
			and	be	accessed	over	a	transport	such	as	Universal	Serial	Bus	(USB),			and	be	accessed	over	a	transport	such	as	Universal	Serial	Bus	(USB),
			Bluetooth	Low	Energy	(BLE)	or	Near	Field	Communications	(NFC).			Bluetooth	Low	Energy	(BLE)	or	Near	Field	Communications	(NFC).

		1.1.	Use	Cases		1.1.	Use	Cases

			The	below	use	case	scenarios	illustrate	use	of	two	very	different	types			The	below	use	case	scenarios	illustrate	use	of	two	very	different	types
			of	authenticators,	as	well	as	outline	further	scenarios.	Additional			of	authenticators,	as	well	as	outline	further	scenarios.	Additional
			scenarios,	including	sample	code,	are	given	later	in	11	Sample			scenarios,	including	sample	code,	are	given	later	in	11	Sample
			scenarios.			scenarios.

				1.1.1.	Registration				1.1.1.	Registration

					*	On	a	phone:					*	On	a	phone:
										+	User	navigates	to	example.com	in	a	browser	and	signs	in	to	an										+	User	navigates	to	example.com	in	a	browser	and	signs	in	to	an
												existing	account	using	whatever	method	they	have	been	using												existing	account	using	whatever	method	they	have	been	using
												(possibly	a	legacy	method	such	as	a	password),	or	creates	a												(possibly	a	legacy	method	such	as	a	password),	or	creates	a
												new	account.												new	account.
										+	The	phone	prompts,	"Do	you	want	to	register	this	device	with										+	The	phone	prompts,	"Do	you	want	to	register	this	device	with
												example.com?"												example.com?"
										+	User	agrees.										+	User	agrees.
										+	The	phone	prompts	the	user	for	a	previously	configured										+	The	phone	prompts	the	user	for	a	previously	configured
												authorization	gesture	(PIN,	biometric,	etc.);	the	user												authorization	gesture	(PIN,	biometric,	etc.);	the	user
												provides	this.												provides	this.
										+	Website	shows	message,	"Registration	complete."										+	Website	shows	message,	"Registration	complete."

				1.1.2.	Authentication				1.1.2.	Authentication
4/72



/Users/jehodges/Documents/work/standards/W3C/webauthn/index-vgb-u2f-attestation-0d0fcea.txt,	Top	line:	248

					*	On	a	laptop	or	desktop:					*	On	a	laptop	or	desktop:
										+	User	navigates	to	example.com	in	a	browser,	sees	an	option	to										+	User	navigates	to	example.com	in	a	browser,	sees	an	option	to
												"Sign	in	with	your	phone."												"Sign	in	with	your	phone."
										+	User	chooses	this	option	and	gets	a	message	from	the	browser,										+	User	chooses	this	option	and	gets	a	message	from	the	browser,
												"Please	complete	this	action	on	your	phone."												"Please	complete	this	action	on	your	phone."
					*	Next,	on	their	phone:					*	Next,	on	their	phone:
										+	User	sees	a	discrete	prompt	or	notification,	"Sign	in	to										+	User	sees	a	discrete	prompt	or	notification,	"Sign	in	to
												example.com."												example.com."
										+	User	selects	this	prompt	/	notification.										+	User	selects	this	prompt	/	notification.
										+	User	is	shown	a	list	of	their	example.com	identities,	e.g.,										+	User	is	shown	a	list	of	their	example.com	identities,	e.g.,
												"Sign	in	as	Alice	/	Sign	in	as	Bob."												"Sign	in	as	Alice	/	Sign	in	as	Bob."
										+	User	picks	an	identity,	is	prompted	for	an	authorization										+	User	picks	an	identity,	is	prompted	for	an	authorization
												gesture	(PIN,	biometric,	etc.)	and	provides	this.												gesture	(PIN,	biometric,	etc.)	and	provides	this.
					*	Now,	back	on	the	laptop:					*	Now,	back	on	the	laptop:
										+	Web	page	shows	that	the	selected	user	is	signed-in,	and										+	Web	page	shows	that	the	selected	user	is	signed-in,	and
												navigates	to	the	signed-in	page.												navigates	to	the	signed-in	page.

				1.1.3.	Other	use	cases	and	configurations				1.1.3.	Other	use	cases	and	configurations

			A	variety	of	additional	use	cases	and	configurations	are	also	possible,			A	variety	of	additional	use	cases	and	configurations	are	also	possible,
			including	(but	not	limited	to):			including	(but	not	limited	to):
					*	A	user	navigates	to	example.com	on	their	laptop,	is	guided	through					*	A	user	navigates	to	example.com	on	their	laptop,	is	guided	through
							a	flow	to	create	and	register	a	credential	on	their	phone.							a	flow	to	create	and	register	a	credential	on	their	phone.
					*	A	user	obtains	an	discrete,	roaming	authenticator,	such	as	a	"fob"					*	A	user	obtains	an	discrete,	roaming	authenticator,	such	as	a	"fob"
							with	USB	or	USB+NFC/BLE	connectivity	options,	loads	example.com	in							with	USB	or	USB+NFC/BLE	connectivity	options,	loads	example.com	in
							their	browser	on	a	laptop	or	phone,	and	is	guided	though	a	flow	to							their	browser	on	a	laptop	or	phone,	and	is	guided	though	a	flow	to
							create	and	register	a	credential	on	the	fob.							create	and	register	a	credential	on	the	fob.
					*	A	Relying	Party	prompts	the	user	for	their	authorization	gesture	in					*	A	Relying	Party	prompts	the	user	for	their	authorization	gesture	in
							order	to	authorize	a	single	transaction,	such	as	a	payment	or	other							order	to	authorize	a	single	transaction,	such	as	a	payment	or	other
							financial	transaction.							financial	transaction.

2.	Conformance2.	Conformance

			This	specification	defines	criteria	for	a	Conforming	User	Agent:	A	User			This	specification	defines	criteria	for	a	Conforming	User	Agent:	A	User
			Agent	MUST	behave	as	described	in	this	specification	in	order	to	be			Agent	MUST	behave	as	described	in	this	specification	in	order	to	be
			considered	conformant.	Conforming	User	Agents	MAY	implement	algorithms			considered	conformant.	Conforming	User	Agents	MAY	implement	algorithms
			given	in	this	specification	in	any	way	desired,	so	long	as	the	end			given	in	this	specification	in	any	way	desired,	so	long	as	the	end
			result	is	indistinguishable	from	the	result	that	would	be	obtained	by			result	is	indistinguishable	from	the	result	that	would	be	obtained	by
			the	specification's	algorithms.	A	conforming	User	Agent	MUST	also	be	a			the	specification's	algorithms.	A	conforming	User	Agent	MUST	also	be	a
			conforming	implementation	of	the	IDL	fragments	of	this	specification,			conforming	implementation	of	the	IDL	fragments	of	this	specification,
			as	described	in	the	"Web	IDL"	specification.	[WebIDL-1]			as	described	in	the	"Web	IDL"	specification.	[WebIDL-1]

			This	specification	also	defines	a	model	of	a	conformant	authenticator			This	specification	also	defines	a	model	of	a	conformant	authenticator
			(see	5	WebAuthn	Authenticator	model).	This	is	a	set	of	functional	and			(see	5	WebAuthn	Authenticator	model).	This	is	a	set	of	functional	and
			security	requirements	for	an	authenticator	to	be	usable	by	a	Conforming			security	requirements	for	an	authenticator	to	be	usable	by	a	Conforming
			User	Agent.	As	described	in	1.1	Use	Cases,	an	authenticator	may	be			User	Agent.	As	described	in	1.1	Use	Cases,	an	authenticator	may	be
			implemented	in	the	operating	system	underlying	the	User	Agent,	or	in			implemented	in	the	operating	system	underlying	the	User	Agent,	or	in
			external	hardware,	or	a	combination	of	both.			external	hardware,	or	a	combination	of	both.

		2.1.	Dependencies		2.1.	Dependencies

			This	specification	relies	on	several	other	underlying	specifications.			This	specification	relies	on	several	other	underlying	specifications.

			HTML			HTML

										The	concepts	of	current	settings	object,	origin,	opaque	origin,										The	concepts	of	current	settings	object,	origin,	opaque	origin,
										relaxing	the	same-origin	restriction,	and	the	Navigator										relaxing	the	same-origin	restriction,	and	the	Navigator
										interface	are	defined	in	[HTML51].										interface	are	defined	in	[HTML51].

			Web	IDL			Web	IDL

/Users/jehodges/Documents/work/standards/W3C/webauthn/index-vgb-u2f-attestation-dc90eab.txt,	Top	line:	248

					*	On	a	laptop	or	desktop:					*	On	a	laptop	or	desktop:
										+	User	navigates	to	example.com	in	a	browser,	sees	an	option	to										+	User	navigates	to	example.com	in	a	browser,	sees	an	option	to
												"Sign	in	with	your	phone."												"Sign	in	with	your	phone."
										+	User	chooses	this	option	and	gets	a	message	from	the	browser,										+	User	chooses	this	option	and	gets	a	message	from	the	browser,
												"Please	complete	this	action	on	your	phone."												"Please	complete	this	action	on	your	phone."
					*	Next,	on	their	phone:					*	Next,	on	their	phone:
										+	User	sees	a	discrete	prompt	or	notification,	"Sign	in	to										+	User	sees	a	discrete	prompt	or	notification,	"Sign	in	to
												example.com."												example.com."
										+	User	selects	this	prompt	/	notification.										+	User	selects	this	prompt	/	notification.
										+	User	is	shown	a	list	of	their	example.com	identities,	e.g.,										+	User	is	shown	a	list	of	their	example.com	identities,	e.g.,
												"Sign	in	as	Alice	/	Sign	in	as	Bob."												"Sign	in	as	Alice	/	Sign	in	as	Bob."
										+	User	picks	an	identity,	is	prompted	for	an	authorization										+	User	picks	an	identity,	is	prompted	for	an	authorization
												gesture	(PIN,	biometric,	etc.)	and	provides	this.												gesture	(PIN,	biometric,	etc.)	and	provides	this.
					*	Now,	back	on	the	laptop:					*	Now,	back	on	the	laptop:
										+	Web	page	shows	that	the	selected	user	is	signed-in,	and										+	Web	page	shows	that	the	selected	user	is	signed-in,	and
												navigates	to	the	signed-in	page.												navigates	to	the	signed-in	page.

				1.1.3.	Other	use	cases	and	configurations				1.1.3.	Other	use	cases	and	configurations

			A	variety	of	additional	use	cases	and	configurations	are	also	possible,			A	variety	of	additional	use	cases	and	configurations	are	also	possible,
			including	(but	not	limited	to):			including	(but	not	limited	to):
					*	A	user	navigates	to	example.com	on	their	laptop,	is	guided	through					*	A	user	navigates	to	example.com	on	their	laptop,	is	guided	through
							a	flow	to	create	and	register	a	credential	on	their	phone.							a	flow	to	create	and	register	a	credential	on	their	phone.
					*	A	user	obtains	an	discrete,	roaming	authenticator,	such	as	a	"fob"					*	A	user	obtains	an	discrete,	roaming	authenticator,	such	as	a	"fob"
							with	USB	or	USB+NFC/BLE	connectivity	options,	loads	example.com	in							with	USB	or	USB+NFC/BLE	connectivity	options,	loads	example.com	in
							their	browser	on	a	laptop	or	phone,	and	is	guided	though	a	flow	to							their	browser	on	a	laptop	or	phone,	and	is	guided	though	a	flow	to
							create	and	register	a	credential	on	the	fob.							create	and	register	a	credential	on	the	fob.
					*	A	Relying	Party	prompts	the	user	for	their	authorization	gesture	in					*	A	Relying	Party	prompts	the	user	for	their	authorization	gesture	in
							order	to	authorize	a	single	transaction,	such	as	a	payment	or	other							order	to	authorize	a	single	transaction,	such	as	a	payment	or	other
							financial	transaction.							financial	transaction.

2.	Conformance2.	Conformance

			This	specification	defines	criteria	for	a	Conforming	User	Agent:	A	User			This	specification	defines	criteria	for	a	Conforming	User	Agent:	A	User
			Agent	MUST	behave	as	described	in	this	specification	in	order	to	be			Agent	MUST	behave	as	described	in	this	specification	in	order	to	be
			considered	conformant.	Conforming	User	Agents	MAY	implement	algorithms			considered	conformant.	Conforming	User	Agents	MAY	implement	algorithms
			given	in	this	specification	in	any	way	desired,	so	long	as	the	end			given	in	this	specification	in	any	way	desired,	so	long	as	the	end
			result	is	indistinguishable	from	the	result	that	would	be	obtained	by			result	is	indistinguishable	from	the	result	that	would	be	obtained	by
			the	specification's	algorithms.	A	conforming	User	Agent	MUST	also	be	a			the	specification's	algorithms.	A	conforming	User	Agent	MUST	also	be	a
			conforming	implementation	of	the	IDL	fragments	of	this	specification,			conforming	implementation	of	the	IDL	fragments	of	this	specification,
			as	described	in	the	"Web	IDL"	specification.	[WebIDL-1]			as	described	in	the	"Web	IDL"	specification.	[WebIDL-1]

			This	specification	also	defines	a	model	of	a	conformant	authenticator			This	specification	also	defines	a	model	of	a	conformant	authenticator
			(see	5	WebAuthn	Authenticator	model).	This	is	a	set	of	functional	and			(see	5	WebAuthn	Authenticator	model).	This	is	a	set	of	functional	and
			security	requirements	for	an	authenticator	to	be	usable	by	a	Conforming			security	requirements	for	an	authenticator	to	be	usable	by	a	Conforming
			User	Agent.	As	described	in	1.1	Use	Cases,	an	authenticator	may	be			User	Agent.	As	described	in	1.1	Use	Cases,	an	authenticator	may	be
			implemented	in	the	operating	system	underlying	the	User	Agent,	or	in			implemented	in	the	operating	system	underlying	the	User	Agent,	or	in
			external	hardware,	or	a	combination	of	both.			external	hardware,	or	a	combination	of	both.

		2.1.	Dependencies		2.1.	Dependencies

			This	specification	relies	on	several	other	underlying	specifications.			This	specification	relies	on	several	other	underlying	specifications.

			HTML			HTML

										The	concepts	of	current	settings	object,	origin,	opaque	origin,										The	concepts	of	current	settings	object,	origin,	opaque	origin,
										relaxing	the	same-origin	restriction,	and	the	Navigator										relaxing	the	same-origin	restriction,	and	the	Navigator
										interface	are	defined	in	[HTML51].										interface	are	defined	in	[HTML51].

			Web	IDL			Web	IDL

5/72



/Users/jehodges/Documents/work/standards/W3C/webauthn/index-vgb-u2f-attestation-0d0fcea.txt,	Top	line:	310

										Many	of	the	interface	definitions	and	all	of	the	IDL	in	this										Many	of	the	interface	definitions	and	all	of	the	IDL	in	this
										specification	depend	on	[WebIDL-1].	This	updated	version	of	the										specification	depend	on	[WebIDL-1].	This	updated	version	of	the
										Web	IDL	standard	adds	support	for	Promises,	which	are	now	the										Web	IDL	standard	adds	support	for	Promises,	which	are	now	the
										preferred	mechanism	for	asynchronous	interaction	in	all	new	web										preferred	mechanism	for	asynchronous	interaction	in	all	new	web
										APIs.										APIs.

			DOM			DOM

										DOMException	and	the	DOMException	values	used	in	this										DOMException	and	the	DOMException	values	used	in	this
										specification	are	defined	in	[DOM4].										specification	are	defined	in	[DOM4].

			Web	Cryptography	API			Web	Cryptography	API

										The	AlgorithmIdentifier	type	and	the	method	for	normalizing	an										The	AlgorithmIdentifier	type	and	the	method	for	normalizing	an
										algorithm	are	defined	in	Web	Cryptography	API										algorithm	are	defined	in	Web	Cryptography	API
										algorithm-dictionary.										algorithm-dictionary.

			Base64url	encoding			Base64url	encoding

										The	term	Base64url	Encoding	refers	to	the	base64	encoding	using										The	term	Base64url	Encoding	refers	to	the	base64	encoding	using
										the	URL-	and	filename-safe	character	set	defined	in	Section	5	of										the	URL-	and	filename-safe	character	set	defined	in	Section	5	of
										[RFC4648],	with	all	trailing	'='	characters	omitted	(as										[RFC4648],	with	all	trailing	'='	characters	omitted	(as
										permitted	by	Section	3.2)	and	without	the	inclusion	of	any	line										permitted	by	Section	3.2)	and	without	the	inclusion	of	any	line
										breaks,	whitespace,	or	other	additional	characters.										breaks,	whitespace,	or	other	additional	characters.

			The	key	words	"MUST",	"MUST	NOT",	"REQUIRED",	"SHALL",	"SHALL	NOT",			The	key	words	"MUST",	"MUST	NOT",	"REQUIRED",	"SHALL",	"SHALL	NOT",
			"SHOULD",	"SHOULD	NOT",	"RECOMMENDED",	"MAY",	and	"OPTIONAL"	in	this			"SHOULD",	"SHOULD	NOT",	"RECOMMENDED",	"MAY",	and	"OPTIONAL"	in	this
			document	are	to	be	interpreted	as	described	in	[RFC2119].			document	are	to	be	interpreted	as	described	in	[RFC2119].

3.	Terminology3.	Terminology

			ASCII	case-insensitive	match			ASCII	case-insensitive	match

										A	method	of	testing	two	strings	for	equality	by	comparing	them										A	method	of	testing	two	strings	for	equality	by	comparing	them
										exactly,	code	point	for	code	point,	except	that	the	codepoints										exactly,	code	point	for	code	point,	except	that	the	codepoints
										in	the	range	U+0041	..	U+005A	(i.e.	LATIN	CAPITAL	LETTER	A	to										in	the	range	U+0041	..	U+005A	(i.e.	LATIN	CAPITAL	LETTER	A	to
										LATIN	CAPITAL	LETTER	Z)	and	the	corresponding	codepoints	in	the										LATIN	CAPITAL	LETTER	Z)	and	the	corresponding	codepoints	in	the
										range	U+0061	..	U+007A	(i.e.	LATIN	SMALL	LETTER	A	to	LATIN	SMALL										range	U+0061	..	U+007A	(i.e.	LATIN	SMALL	LETTER	A	to	LATIN	SMALL
										LETTER	Z)	are	also	considered	to	match.										LETTER	Z)	are	also	considered	to	match.

			Assertion			Assertion

										See	Authentication	Assertion.										See	Authentication	Assertion.

			Attestation			Attestation

										Generally,	a	statement	that	serves	to	bear	witness,	confirm,	or										Generally,	a	statement	that	serves	to	bear	witness,	confirm,	or
										authenticate.	In	the	WebAuthn	context,	attestation	is	employed										authenticate.	In	the	WebAuthn	context,	attestation	is	employed
										to	attest	to	the	provenance	of	an	authenticator	and	the	data	it										to	attest	to	the	provenance	of	an	authenticator	and	the	data	it
										emits;	including,	for	example:	credential	IDs,	credential	key										emits;	including,	for	example:	credential	IDs,	credential	key
										pairs,	signature	counters,	etc.	Attestation	information	is										pairs,	signature	counters,	etc.	Attestation	information	is
										conveyed	in	attestation	objects.	See	also	attestation	statement										conveyed	in	attestation	objects.	See	also	attestation	statement
										format,	and	attestation	type.										format,	and	attestation	type.

			Attestation	Certificate			Attestation	Certificate

										A	X.509	Certificate	for	the	attestation	key	pair	used	by	an										A	X.509	Certificate	for	the	attestation	key	pair	used	by	an
										Authenticator	to	attest	to	its	manufacture	and	capabilities.	At										Authenticator	to	attest	to	its	manufacture	and	capabilities.	At
										registration	time,	the	authenticator	uses	the	attestation										registration	time,	the	authenticator	uses	the	attestation
										private	key	to	sign	the	Relying	Party-specific	credential	public										private	key	to	sign	the	Relying	Party-specific	credential	public
										key	(and	additional	data)	that	it	generates	and	returns	via	the										key	(and	additional	data)	that	it	generates	and	returns	via	the
										authenticatorMakeCredential	operation.	Relying	Parties	use	the										authenticatorMakeCredential	operation.	Relying	Parties	use	the

/Users/jehodges/Documents/work/standards/W3C/webauthn/index-vgb-u2f-attestation-dc90eab.txt,	Top	line:	310

										Many	of	the	interface	definitions	and	all	of	the	IDL	in	this										Many	of	the	interface	definitions	and	all	of	the	IDL	in	this
										specification	depend	on	[WebIDL-1].	This	updated	version	of	the										specification	depend	on	[WebIDL-1].	This	updated	version	of	the
										Web	IDL	standard	adds	support	for	Promises,	which	are	now	the										Web	IDL	standard	adds	support	for	Promises,	which	are	now	the
										preferred	mechanism	for	asynchronous	interaction	in	all	new	web										preferred	mechanism	for	asynchronous	interaction	in	all	new	web
										APIs.										APIs.

			DOM			DOM

										DOMException	and	the	DOMException	values	used	in	this										DOMException	and	the	DOMException	values	used	in	this
										specification	are	defined	in	[DOM4].										specification	are	defined	in	[DOM4].

			Web	Cryptography	API			Web	Cryptography	API

										The	AlgorithmIdentifier	type	and	the	method	for	normalizing	an										The	AlgorithmIdentifier	type	and	the	method	for	normalizing	an
										algorithm	are	defined	in	Web	Cryptography	API										algorithm	are	defined	in	Web	Cryptography	API
										algorithm-dictionary.										algorithm-dictionary.

			Base64url	encoding			Base64url	encoding

										The	term	Base64url	Encoding	refers	to	the	base64	encoding	using										The	term	Base64url	Encoding	refers	to	the	base64	encoding	using
										the	URL-	and	filename-safe	character	set	defined	in	Section	5	of										the	URL-	and	filename-safe	character	set	defined	in	Section	5	of
										[RFC4648],	with	all	trailing	'='	characters	omitted	(as										[RFC4648],	with	all	trailing	'='	characters	omitted	(as
										permitted	by	Section	3.2)	and	without	the	inclusion	of	any	line										permitted	by	Section	3.2)	and	without	the	inclusion	of	any	line
										breaks,	whitespace,	or	other	additional	characters.										breaks,	whitespace,	or	other	additional	characters.

			The	key	words	"MUST",	"MUST	NOT",	"REQUIRED",	"SHALL",	"SHALL	NOT",			The	key	words	"MUST",	"MUST	NOT",	"REQUIRED",	"SHALL",	"SHALL	NOT",
			"SHOULD",	"SHOULD	NOT",	"RECOMMENDED",	"MAY",	and	"OPTIONAL"	in	this			"SHOULD",	"SHOULD	NOT",	"RECOMMENDED",	"MAY",	and	"OPTIONAL"	in	this
			document	are	to	be	interpreted	as	described	in	[RFC2119].			document	are	to	be	interpreted	as	described	in	[RFC2119].

3.	Terminology3.	Terminology

			ASCII	case-insensitive	match			ASCII	case-insensitive	match

										A	method	of	testing	two	strings	for	equality	by	comparing	them										A	method	of	testing	two	strings	for	equality	by	comparing	them
										exactly,	code	point	for	code	point,	except	that	the	codepoints										exactly,	code	point	for	code	point,	except	that	the	codepoints
										in	the	range	U+0041	..	U+005A	(i.e.	LATIN	CAPITAL	LETTER	A	to										in	the	range	U+0041	..	U+005A	(i.e.	LATIN	CAPITAL	LETTER	A	to
										LATIN	CAPITAL	LETTER	Z)	and	the	corresponding	codepoints	in	the										LATIN	CAPITAL	LETTER	Z)	and	the	corresponding	codepoints	in	the
										range	U+0061	..	U+007A	(i.e.	LATIN	SMALL	LETTER	A	to	LATIN	SMALL										range	U+0061	..	U+007A	(i.e.	LATIN	SMALL	LETTER	A	to	LATIN	SMALL
										LETTER	Z)	are	also	considered	to	match.										LETTER	Z)	are	also	considered	to	match.

			Assertion			Assertion

										See	Authentication	Assertion.										See	Authentication	Assertion.

			Attestation			Attestation

										Generally,	a	statement	that	serves	to	bear	witness,	confirm,	or										Generally,	a	statement	that	serves	to	bear	witness,	confirm,	or
										authenticate.	In	the	WebAuthn	context,	attestation	is	employed										authenticate.	In	the	WebAuthn	context,	attestation	is	employed
										to	attest	to	the	provenance	of	an	authenticator	and	the	data	it										to	attest	to	the	provenance	of	an	authenticator	and	the	data	it
										emits;	including,	for	example:	credential	IDs,	credential	key										emits;	including,	for	example:	credential	IDs,	credential	key
										pairs,	signature	counters,	etc.	Attestation	information	is										pairs,	signature	counters,	etc.	Attestation	information	is
										conveyed	in	attestation	objects.	See	also	attestation	statement										conveyed	in	attestation	objects.	See	also	attestation	statement
										format,	and	attestation	type.										format,	and	attestation	type.

			Attestation	Certificate			Attestation	Certificate

										A	X.509	Certificate	for	the	attestation	key	pair	used	by	an										A	X.509	Certificate	for	the	attestation	key	pair	used	by	an
										Authenticator	to	attest	to	its	manufacture	and	capabilities.	At										Authenticator	to	attest	to	its	manufacture	and	capabilities.	At
										registration	time,	the	authenticator	uses	the	attestation										registration	time,	the	authenticator	uses	the	attestation
										private	key	to	sign	the	Relying	Party-specific	credential	public										private	key	to	sign	the	Relying	Party-specific	credential	public
										key	(and	additional	data)	that	it	generates	and	returns	via	the										key	(and	additional	data)	that	it	generates	and	returns	via	the
										authenticatorMakeCredential	operation.	Relying	Parties	use	the										authenticatorMakeCredential	operation.	Relying	Parties	use	the

6/72



/Users/jehodges/Documents/work/standards/W3C/webauthn/index-vgb-u2f-attestation-0d0fcea.txt,	Top	line:	372

										attestation	public	key	conveyed	in	the	attestation	certificate										attestation	public	key	conveyed	in	the	attestation	certificate
										to	verify	the	attestation	signature.	Note	that	in	the	case	of										to	verify	the	attestation	signature.	Note	that	in	the	case	of
										self	attestation,	the	authenticator	has	no	distinct	attestation										self	attestation,	the	authenticator	has	no	distinct	attestation
										key	pair	nor	attestation	certificate,	see	self	attestation	for										key	pair	nor	attestation	certificate,	see	self	attestation	for
										details.										details.

			Authentication			Authentication

										The	ceremony	where	a	user,	and	the	user's	computing	device(s)										The	ceremony	where	a	user,	and	the	user's	computing	device(s)
										(containing	at	least	one	authenticator)	work	in	concert	to										(containing	at	least	one	authenticator)	work	in	concert	to
										cryptographically	prove	to	an	Relying	Party	that	the	user										cryptographically	prove	to	an	Relying	Party	that	the	user
										controls	the	private	key	associated	with	a	previously-registered										controls	the	private	key	associated	with	a	previously-registered
										scoped	credential	(see	Registration).	Note	that	this	includes										scoped	credential	(see	Registration).	Note	that	this	includes
										employing	user	verification.										employing	user	verification.

			Authentication	Assertion			Authentication	Assertion

										The	cryptographically	signed	AuthenticationAssertion	object										The	cryptographically	signed	AuthenticationAssertion	object
										returned	by	an	authenticator	as	the	result	of	a										returned	by	an	authenticator	as	the	result	of	a
										authenticatorGetAssertion	operation.										authenticatorGetAssertion	operation.

			Authenticator			Authenticator

										A	cryptographic	device	used	by	a	WebAuthn	Client	to	(i)	generate										A	cryptographic	device	used	by	a	WebAuthn	Client	to	(i)	generate
										a	scoped	credential	and	register	it	with	a	Relying	Party,	and										a	scoped	credential	and	register	it	with	a	Relying	Party,	and
										(ii)	subsequently	used	to	cryptographically	sign	and	return,	in										(ii)	subsequently	used	to	cryptographically	sign	and	return,	in
										the	form	of	an	Authentication	Assertion,	a	challenge	and	other										the	form	of	an	Authentication	Assertion,	a	challenge	and	other
										data	presented	by	a	Relying	Party	(in	concert	with	the	WebAuthn										data	presented	by	a	Relying	Party	(in	concert	with	the	WebAuthn
										Client)	in	order	to	effect	authentication.										Client)	in	order	to	effect	authentication.

			Authorization	Gesture			Authorization	Gesture

										Essentially	the	same	as	user	verification.										Essentially	the	same	as	user	verification.

			Ceremony			Ceremony

										The	concept	of	a	ceremony	[Ceremony]	is	an	extension	of	the										The	concept	of	a	ceremony	[Ceremony]	is	an	extension	of	the
										concept	of	a	network	protocol,	with	human	nodes	alongside										concept	of	a	network	protocol,	with	human	nodes	alongside
										computer	nodes	and	with	communication	links	that	include	UI,										computer	nodes	and	with	communication	links	that	include	UI,
										human-to-human	communication	and	transfers	of	physical	objects										human-to-human	communication	and	transfers	of	physical	objects
										that	carry	data.	What	is	out-of-band	to	a	protocol	is	in-band	to										that	carry	data.	What	is	out-of-band	to	a	protocol	is	in-band	to
										a	ceremony.	In	this	specification,	Registration,	Authentication,										a	ceremony.	In	this	specification,	Registration,	Authentication,
										and	user	verification	are	ceremonies.										and	user	verification	are	ceremonies.

			Client			Client

										See	Conforming	User	Agent.										See	Conforming	User	Agent.

			Conforming	User	Agent			Conforming	User	Agent

										A	user	agent	implementing,	in	conjunction	with	the	underlying										A	user	agent	implementing,	in	conjunction	with	the	underlying
										platform,	the	Web	Authentication	API	and	algorithms	given	in										platform,	the	Web	Authentication	API	and	algorithms	given	in
										this	specification,	and	handling	communication	between										this	specification,	and	handling	communication	between
										Authenticators	and	Relying	Parties.										Authenticators	and	Relying	Parties.

			Credential	Public	Key			Credential	Public	Key

										The	public	key	portion	of	an	Relying	Party-specific	credential										The	public	key	portion	of	an	Relying	Party-specific	credential
										key	pair,	generated	by	an	authenticator	and	returned	to	an										key	pair,	generated	by	an	authenticator	and	returned	to	an
										Relying	Party	at	registration	time	(see	also	scoped	credential).										Relying	Party	at	registration	time	(see	also	scoped	credential).
										The	private	key	portion	of	the	credential	key	pair	is	known	as										The	private	key	portion	of	the	credential	key	pair	is	known	as
										the	credential	private	key.	Note	that	in	the	case	of	self										the	credential	private	key.	Note	that	in	the	case	of	self

/Users/jehodges/Documents/work/standards/W3C/webauthn/index-vgb-u2f-attestation-dc90eab.txt,	Top	line:	372

										attestation	public	key	conveyed	in	the	attestation	certificate										attestation	public	key	conveyed	in	the	attestation	certificate
										to	verify	the	attestation	signature.	Note	that	in	the	case	of										to	verify	the	attestation	signature.	Note	that	in	the	case	of
										self	attestation,	the	authenticator	has	no	distinct	attestation										self	attestation,	the	authenticator	has	no	distinct	attestation
										key	pair	nor	attestation	certificate,	see	self	attestation	for										key	pair	nor	attestation	certificate,	see	self	attestation	for
										details.										details.

			Authentication			Authentication

										The	ceremony	where	a	user,	and	the	user's	computing	device(s)										The	ceremony	where	a	user,	and	the	user's	computing	device(s)
										(containing	at	least	one	authenticator)	work	in	concert	to										(containing	at	least	one	authenticator)	work	in	concert	to
										cryptographically	prove	to	an	Relying	Party	that	the	user										cryptographically	prove	to	an	Relying	Party	that	the	user
										controls	the	private	key	associated	with	a	previously-registered										controls	the	private	key	associated	with	a	previously-registered
										scoped	credential	(see	Registration).	Note	that	this	includes										scoped	credential	(see	Registration).	Note	that	this	includes
										employing	user	verification.										employing	user	verification.

			Authentication	Assertion			Authentication	Assertion

										The	cryptographically	signed	AuthenticationAssertion	object										The	cryptographically	signed	AuthenticationAssertion	object
										returned	by	an	authenticator	as	the	result	of	a										returned	by	an	authenticator	as	the	result	of	a
										authenticatorGetAssertion	operation.										authenticatorGetAssertion	operation.

			Authenticator			Authenticator

										A	cryptographic	device	used	by	a	WebAuthn	Client	to	(i)	generate										A	cryptographic	device	used	by	a	WebAuthn	Client	to	(i)	generate
										a	scoped	credential	and	register	it	with	a	Relying	Party,	and										a	scoped	credential	and	register	it	with	a	Relying	Party,	and
										(ii)	subsequently	used	to	cryptographically	sign	and	return,	in										(ii)	subsequently	used	to	cryptographically	sign	and	return,	in
										the	form	of	an	Authentication	Assertion,	a	challenge	and	other										the	form	of	an	Authentication	Assertion,	a	challenge	and	other
										data	presented	by	a	Relying	Party	(in	concert	with	the	WebAuthn										data	presented	by	a	Relying	Party	(in	concert	with	the	WebAuthn
										Client)	in	order	to	effect	authentication.										Client)	in	order	to	effect	authentication.

			Authorization	Gesture			Authorization	Gesture

										Essentially	the	same	as	user	verification.										Essentially	the	same	as	user	verification.

			Ceremony			Ceremony

										The	concept	of	a	ceremony	[Ceremony]	is	an	extension	of	the										The	concept	of	a	ceremony	[Ceremony]	is	an	extension	of	the
										concept	of	a	network	protocol,	with	human	nodes	alongside										concept	of	a	network	protocol,	with	human	nodes	alongside
										computer	nodes	and	with	communication	links	that	include	UI,										computer	nodes	and	with	communication	links	that	include	UI,
										human-to-human	communication	and	transfers	of	physical	objects										human-to-human	communication	and	transfers	of	physical	objects
										that	carry	data.	What	is	out-of-band	to	a	protocol	is	in-band	to										that	carry	data.	What	is	out-of-band	to	a	protocol	is	in-band	to
										a	ceremony.	In	this	specification,	Registration,	Authentication,										a	ceremony.	In	this	specification,	Registration,	Authentication,
										and	user	verification	are	ceremonies.										and	user	verification	are	ceremonies.

			Client			Client

										See	Conforming	User	Agent.										See	Conforming	User	Agent.

			Conforming	User	Agent			Conforming	User	Agent

										A	user	agent	implementing,	in	conjunction	with	the	underlying										A	user	agent	implementing,	in	conjunction	with	the	underlying
										platform,	the	Web	Authentication	API	and	algorithms	given	in										platform,	the	Web	Authentication	API	and	algorithms	given	in
										this	specification,	and	handling	communication	between										this	specification,	and	handling	communication	between
										Authenticators	and	Relying	Parties.										Authenticators	and	Relying	Parties.

			Credential	Public	Key			Credential	Public	Key

										The	public	key	portion	of	an	Relying	Party-specific	credential										The	public	key	portion	of	an	Relying	Party-specific	credential
										key	pair,	generated	by	an	authenticator	and	returned	to	an										key	pair,	generated	by	an	authenticator	and	returned	to	an
										Relying	Party	at	registration	time	(see	also	scoped	credential).										Relying	Party	at	registration	time	(see	also	scoped	credential).
										The	private	key	portion	of	the	credential	key	pair	is	known	as										The	private	key	portion	of	the	credential	key	pair	is	known	as
										the	credential	private	key.	Note	that	in	the	case	of	self										the	credential	private	key.	Note	that	in	the	case	of	self

7/72



/Users/jehodges/Documents/work/standards/W3C/webauthn/index-vgb-u2f-attestation-0d0fcea.txt,	Top	line:	434

										attestation,	the	credential	key	pair	is	also	used	as	the										attestation,	the	credential	key	pair	is	also	used	as	the
										attestation	key	pair,	see	self	attestation	for	details.										attestation	key	pair,	see	self	attestation	for	details.

			Registration			Registration

										The	ceremony	where	a	user,	a	Relying	Party,	and	the	user's										The	ceremony	where	a	user,	a	Relying	Party,	and	the	user's
										computing	device(s)	(containing	at	least	one	authenticator)	work										computing	device(s)	(containing	at	least	one	authenticator)	work
										in	concert	to	create	a	scoped	credential	and	associate	it	with										in	concert	to	create	a	scoped	credential	and	associate	it	with
										the	user's	Relying	Party	account.	Note	that	this	includes										the	user's	Relying	Party	account.	Note	that	this	includes
										employing	user	verification.										employing	user	verification.

			Relying	Party			Relying	Party

										The	entity	whose	web	application	utilizes	the	Web	Authentication										The	entity	whose	web	application	utilizes	the	Web	Authentication
										API	to	register	and	authenticate	users.	See	Registration	and										API	to	register	and	authenticate	users.	See	Registration	and
										Authentication,	respectively.										Authentication,	respectively.

										Note:	While	the	term	Relying	Party	is	used	in	other	contexts										Note:	While	the	term	Relying	Party	is	used	in	other	contexts
										(e.g.,	X.509	and	OAuth),	an	entity	acting	as	a	Relying	Party	in										(e.g.,	X.509	and	OAuth),	an	entity	acting	as	a	Relying	Party	in
										one	context	is	not	necessarily	a	Relying	Party	in	other										one	context	is	not	necessarily	a	Relying	Party	in	other
										contexts.										contexts.

			Relying	Party	Identifier			Relying	Party	Identifier

			RP	ID			RP	ID

										An	identifier	for	the	Relying	Party	on	whose	behalf	a	given										An	identifier	for	the	Relying	Party	on	whose	behalf	a	given
										registration	or	authentication	ceremony	is	being	performed.										registration	or	authentication	ceremony	is	being	performed.
										Scoped	credentials	can	only	be	used	for	authentication	by	the										Scoped	credentials	can	only	be	used	for	authentication	by	the
										same	entity	(as	identified	by	RP	ID)	that	created	and	registered										same	entity	(as	identified	by	RP	ID)	that	created	and	registered
										them.	By	default,	the	RP	ID	for	a	WebAuthn	operation	is	set	to										them.	By	default,	the	RP	ID	for	a	WebAuthn	operation	is	set	to
										the	current	settings	object's	origin.	This	default	can	be										the	current	settings	object's	origin.	This	default	can	be
										overridden	by	the	caller	subject	to	certain	restrictions,	as										overridden	by	the	caller	subject	to	certain	restrictions,	as
										specified	in	4.1.1	Create	a	new	credential	(makeCredential()										specified	in	4.1.1	Create	a	new	credential	(makeCredential()
										method)	and	4.1.2	Use	an	existing	credential	(getAssertion()										method)	and	4.1.2	Use	an	existing	credential	(getAssertion()
										method).										method).

			Scoped	Credential			Scoped	Credential

										Generically,	a	credential	is	data	one	entity	presents	to	another										Generically,	a	credential	is	data	one	entity	presents	to	another
										in	order	to	authenticate	the	former's	identity	[RFC4949].	A										in	order	to	authenticate	the	former's	identity	[RFC4949].	A
										WebAuthn	scoped	credential	is	a	{	identifier,	type	}	pair										WebAuthn	scoped	credential	is	a	{	identifier,	type	}	pair
										identifying	authentication	information	established	by	the										identifying	authentication	information	established	by	the
										authenticator	and	the	Relying	Party,	together,	at	registration										authenticator	and	the	Relying	Party,	together,	at	registration
										time.	The	authentication	information	consists	of	an	asymmetric										time.	The	authentication	information	consists	of	an	asymmetric
										key	pair,	where	the	public	key	portion	is	returned	to	the										key	pair,	where	the	public	key	portion	is	returned	to	the
										Relying	Party,	which	stores	it	in	conjunction	with	the	present										Relying	Party,	which	stores	it	in	conjunction	with	the	present
										user's	account.	The	authenticator	maps	the	private	key	to	the										user's	account.	The	authenticator	maps	the	private	key	to	the
										Relying	Party's	RP	ID	and	stores	it.	Subsequently,	only	that										Relying	Party's	RP	ID	and	stores	it.	Subsequently,	only	that
										Relying	Party,	as	identified	by	its	RP	ID,	is	able	to	employ	the										Relying	Party,	as	identified	by	its	RP	ID,	is	able	to	employ	the
										scoped	credential	in	authentication	ceremonies,	via	the										scoped	credential	in	authentication	ceremonies,	via	the
										getAssertion()	method.	The	Relying	Party	uses	its	copy	of	the										getAssertion()	method.	The	Relying	Party	uses	its	copy	of	the
										stored	public	key	to	verify	the	resultant	Authentication										stored	public	key	to	verify	the	resultant	Authentication
										Assertion.										Assertion.

			User	Consent			User	Consent

										User	consent	means	the	user	agrees	with	what	they	are	being										User	consent	means	the	user	agrees	with	what	they	are	being
										asked,	i.e.,	it	encompasses	reading	and	understanding	prompts.										asked,	i.e.,	it	encompasses	reading	and	understanding	prompts.
										User	verification	encompasses	the	means	employed	by	the	user	to										User	verification	encompasses	the	means	employed	by	the	user	to
										indicate	consent.										indicate	consent.

/Users/jehodges/Documents/work/standards/W3C/webauthn/index-vgb-u2f-attestation-dc90eab.txt,	Top	line:	434

										attestation,	the	credential	key	pair	is	also	used	as	the										attestation,	the	credential	key	pair	is	also	used	as	the
										attestation	key	pair,	see	self	attestation	for	details.										attestation	key	pair,	see	self	attestation	for	details.

			Registration			Registration

										The	ceremony	where	a	user,	a	Relying	Party,	and	the	user's										The	ceremony	where	a	user,	a	Relying	Party,	and	the	user's
										computing	device(s)	(containing	at	least	one	authenticator)	work										computing	device(s)	(containing	at	least	one	authenticator)	work
										in	concert	to	create	a	scoped	credential	and	associate	it	with										in	concert	to	create	a	scoped	credential	and	associate	it	with
										the	user's	Relying	Party	account.	Note	that	this	includes										the	user's	Relying	Party	account.	Note	that	this	includes
										employing	user	verification.										employing	user	verification.

			Relying	Party			Relying	Party

										The	entity	whose	web	application	utilizes	the	Web	Authentication										The	entity	whose	web	application	utilizes	the	Web	Authentication
										API	to	register	and	authenticate	users.	See	Registration	and										API	to	register	and	authenticate	users.	See	Registration	and
										Authentication,	respectively.										Authentication,	respectively.

										Note:	While	the	term	Relying	Party	is	used	in	other	contexts										Note:	While	the	term	Relying	Party	is	used	in	other	contexts
										(e.g.,	X.509	and	OAuth),	an	entity	acting	as	a	Relying	Party	in										(e.g.,	X.509	and	OAuth),	an	entity	acting	as	a	Relying	Party	in
										one	context	is	not	necessarily	a	Relying	Party	in	other										one	context	is	not	necessarily	a	Relying	Party	in	other
										contexts.										contexts.

			Relying	Party	Identifier			Relying	Party	Identifier

			RP	ID			RP	ID

										An	identifier	for	the	Relying	Party	on	whose	behalf	a	given										An	identifier	for	the	Relying	Party	on	whose	behalf	a	given
										registration	or	authentication	ceremony	is	being	performed.										registration	or	authentication	ceremony	is	being	performed.
										Scoped	credentials	can	only	be	used	for	authentication	by	the										Scoped	credentials	can	only	be	used	for	authentication	by	the
										same	entity	(as	identified	by	RP	ID)	that	created	and	registered										same	entity	(as	identified	by	RP	ID)	that	created	and	registered
										them.	By	default,	the	RP	ID	for	a	WebAuthn	operation	is	set	to										them.	By	default,	the	RP	ID	for	a	WebAuthn	operation	is	set	to
										the	current	settings	object's	origin.	This	default	can	be										the	current	settings	object's	origin.	This	default	can	be
										overridden	by	the	caller	subject	to	certain	restrictions,	as										overridden	by	the	caller	subject	to	certain	restrictions,	as
										specified	in	4.1.1	Create	a	new	credential	(makeCredential()										specified	in	4.1.1	Create	a	new	credential	(makeCredential()
										method)	and	4.1.2	Use	an	existing	credential	(getAssertion()										method)	and	4.1.2	Use	an	existing	credential	(getAssertion()
										method).										method).

			Scoped	Credential			Scoped	Credential

										Generically,	a	credential	is	data	one	entity	presents	to	another										Generically,	a	credential	is	data	one	entity	presents	to	another
										in	order	to	authenticate	the	former's	identity	[RFC4949].	A										in	order	to	authenticate	the	former's	identity	[RFC4949].	A
										WebAuthn	scoped	credential	is	a	{	identifier,	type	}	pair										WebAuthn	scoped	credential	is	a	{	identifier,	type	}	pair
										identifying	authentication	information	established	by	the										identifying	authentication	information	established	by	the
										authenticator	and	the	Relying	Party,	together,	at	registration										authenticator	and	the	Relying	Party,	together,	at	registration
										time.	The	authentication	information	consists	of	an	asymmetric										time.	The	authentication	information	consists	of	an	asymmetric
										key	pair,	where	the	public	key	portion	is	returned	to	the										key	pair,	where	the	public	key	portion	is	returned	to	the
										Relying	Party,	which	stores	it	in	conjunction	with	the	present										Relying	Party,	which	stores	it	in	conjunction	with	the	present
										user's	account.	The	authenticator	maps	the	private	key	to	the										user's	account.	The	authenticator	maps	the	private	key	to	the
										Relying	Party's	RP	ID	and	stores	it.	Subsequently,	only	that										Relying	Party's	RP	ID	and	stores	it.	Subsequently,	only	that
										Relying	Party,	as	identified	by	its	RP	ID,	is	able	to	employ	the										Relying	Party,	as	identified	by	its	RP	ID,	is	able	to	employ	the
										scoped	credential	in	authentication	ceremonies,	via	the										scoped	credential	in	authentication	ceremonies,	via	the
										getAssertion()	method.	The	Relying	Party	uses	its	copy	of	the										getAssertion()	method.	The	Relying	Party	uses	its	copy	of	the
										stored	public	key	to	verify	the	resultant	Authentication										stored	public	key	to	verify	the	resultant	Authentication
										Assertion.										Assertion.

			User	Consent			User	Consent

										User	consent	means	the	user	agrees	with	what	they	are	being										User	consent	means	the	user	agrees	with	what	they	are	being
										asked,	i.e.,	it	encompasses	reading	and	understanding	prompts.										asked,	i.e.,	it	encompasses	reading	and	understanding	prompts.
										User	verification	encompasses	the	means	employed	by	the	user	to										User	verification	encompasses	the	means	employed	by	the	user	to
										indicate	consent.										indicate	consent.

8/72



/Users/jehodges/Documents/work/standards/W3C/webauthn/index-vgb-u2f-attestation-0d0fcea.txt,	Top	line:	496

			User	Verification			User	Verification

										The	process	by	which	an	authenticator	locally	authorizes	the										The	process	by	which	an	authenticator	locally	authorizes	the
										invocation	of	the	authenticatorMakeCredential	and										invocation	of	the	authenticatorMakeCredential	and
										authenticatorGetAssertion	operations,	for	example	through	a										authenticatorGetAssertion	operations,	for	example	through	a
										touch	plus	pin	code,	a	password,	a	gesture	(e.g.,	presenting	a										touch	plus	pin	code,	a	password,	a	gesture	(e.g.,	presenting	a
										fingerprint),	or	other	modality.	Note	that	invocation	of	said										fingerprint),	or	other	modality.	Note	that	invocation	of	said
										operations	implies	use	of	key	material	managed	by	the										operations	implies	use	of	key	material	managed	by	the
										authenticator.										authenticator.

			WebAuthn	Client			WebAuthn	Client

										See	Conforming	User	Agent.										See	Conforming	User	Agent.

4.	Web	Authentication	API4.	Web	Authentication	API

			This	section	normatively	specifies	the	API	for	creating	and	using			This	section	normatively	specifies	the	API	for	creating	and	using
			scoped	credentials.	The	basic	idea	is	that	the	credentials	belong	to			scoped	credentials.	The	basic	idea	is	that	the	credentials	belong	to
			the	user	and	are	managed	by	an	authenticator,	with	which	the	Relying			the	user	and	are	managed	by	an	authenticator,	with	which	the	Relying
			Party	interacts	through	the	client	(consisting	of	the	browser	and			Party	interacts	through	the	client	(consisting	of	the	browser	and
			underlying	OS	platform).	Scripts	can	(with	the	user's	consent)	request			underlying	OS	platform).	Scripts	can	(with	the	user's	consent)	request
			the	browser	to	create	a	new	credential	for	future	use	by	the	Relying			the	browser	to	create	a	new	credential	for	future	use	by	the	Relying
			Party.	Scripts	can	also	request	the	user's	permission	to	perform			Party.	Scripts	can	also	request	the	user's	permission	to	perform
			authentication	operations	with	an	existing	credential.	All	such			authentication	operations	with	an	existing	credential.	All	such
			operations	are	performed	in	the	authenticator	and	are	mediated	by	the			operations	are	performed	in	the	authenticator	and	are	mediated	by	the
			browser	and/or	platform	on	the	user's	behalf.	At	no	point	does	the			browser	and/or	platform	on	the	user's	behalf.	At	no	point	does	the
			script	get	access	to	the	credentials	themselves;	it	only	gets			script	get	access	to	the	credentials	themselves;	it	only	gets
			information	about	the	credentials	in	the	form	of	objects.			information	about	the	credentials	in	the	form	of	objects.

			In	addition	to	the	above	script	interface,	the	authenticator	may			In	addition	to	the	above	script	interface,	the	authenticator	may
			implement	(or	come	with	client	software	that	implements)	a	user			implement	(or	come	with	client	software	that	implements)	a	user
			interface	for	management.	Such	an	interface	may	be	used,	for	example,			interface	for	management.	Such	an	interface	may	be	used,	for	example,
			to	reset	the	authenticator	to	a	clean	state	or	to	inspect	the	current			to	reset	the	authenticator	to	a	clean	state	or	to	inspect	the	current
			state	of	the	authenticator.	In	other	words,	such	an	interface	is			state	of	the	authenticator.	In	other	words,	such	an	interface	is
			similar	to	the	user	interfaces	provided	by	browsers	for	managing	user			similar	to	the	user	interfaces	provided	by	browsers	for	managing	user
			state	such	as	history,	saved	passwords	and	cookies.	Authenticator			state	such	as	history,	saved	passwords	and	cookies.	Authenticator
			management	actions	such	as	credential	deletion	are	considered	to	be	the			management	actions	such	as	credential	deletion	are	considered	to	be	the
			responsibility	of	such	a	user	interface	and	are	deliberately	omitted			responsibility	of	such	a	user	interface	and	are	deliberately	omitted
			from	the	API	exposed	to	scripts.			from	the	API	exposed	to	scripts.

			The	security	properties	of	this	API	are	provided	by	the	client	and	the			The	security	properties	of	this	API	are	provided	by	the	client	and	the
			authenticator	working	together.	The	authenticator,	which	holds	and			authenticator	working	together.	The	authenticator,	which	holds	and
			manages	credentials,	ensures	that	all	operations	are	scoped	to	a			manages	credentials,	ensures	that	all	operations	are	scoped	to	a
			particular	origin,	and	cannot	be	replayed	against	a	different	origin,			particular	origin,	and	cannot	be	replayed	against	a	different	origin,
			by	incorporating	the	origin	in	its	responses.	Specifically,	as	defined			by	incorporating	the	origin	in	its	responses.	Specifically,	as	defined
			in	5.2	Signature	Format,	the	full	origin	of	the	requester	is	included,			in	5.2	Signature	Format,	the	full	origin	of	the	requester	is	included,
			and	signed	over,	in	the	attestation	object	produced	when	a	new			and	signed	over,	in	the	attestation	object	produced	when	a	new
			credential	is	created	as	well	as	in	all	assertions	produced	by	WebAuthn			credential	is	created	as	well	as	in	all	assertions	produced	by	WebAuthn
			credentials.			credentials.

			Additionally,	to	maintain	user	privacy	and	prevent	malicious	Relying			Additionally,	to	maintain	user	privacy	and	prevent	malicious	Relying
			Parties	from	probing	for	the	presence	of	credentials	belonging	to	other			Parties	from	probing	for	the	presence	of	credentials	belonging	to	other
			Relying	Parties,	each	credential	is	also	associated	with	a	Relying			Relying	Parties,	each	credential	is	also	associated	with	a	Relying
			Party	Identifier,	or	RP	ID.	This	RP	ID	is	provided	by	the	client	to	the			Party	Identifier,	or	RP	ID.	This	RP	ID	is	provided	by	the	client	to	the
			authenticator	for	all	operations,	and	the	authenticator	ensures	that			authenticator	for	all	operations,	and	the	authenticator	ensures	that
			credentials	created	by	a	Relying	Party	can	only	be	used	in	operations			credentials	created	by	a	Relying	Party	can	only	be	used	in	operations
			requested	by	the	same	RP	ID.	Separating	the	origin	from	the	RP	ID	in			requested	by	the	same	RP	ID.	Separating	the	origin	from	the	RP	ID	in
			this	way	allows	the	API	to	be	used	in	cases	where	a	single	Relying			this	way	allows	the	API	to	be	used	in	cases	where	a	single	Relying
			Party	maintains	multiple	origins.			Party	maintains	multiple	origins.

			The	client	facilitates	these	security	measures	by	providing	correct			The	client	facilitates	these	security	measures	by	providing	correct
			origins	and	RP	IDs	to	the	authenticator	for	each	operation.	Since	this			origins	and	RP	IDs	to	the	authenticator	for	each	operation.	Since	this

/Users/jehodges/Documents/work/standards/W3C/webauthn/index-vgb-u2f-attestation-dc90eab.txt,	Top	line:	496

			User	Verification			User	Verification

										The	process	by	which	an	authenticator	locally	authorizes	the										The	process	by	which	an	authenticator	locally	authorizes	the
										invocation	of	the	authenticatorMakeCredential	and										invocation	of	the	authenticatorMakeCredential	and
										authenticatorGetAssertion	operations,	for	example	through	a										authenticatorGetAssertion	operations,	for	example	through	a
										touch	plus	pin	code,	a	password,	a	gesture	(e.g.,	presenting	a										touch	plus	pin	code,	a	password,	a	gesture	(e.g.,	presenting	a
										fingerprint),	or	other	modality.	Note	that	invocation	of	said										fingerprint),	or	other	modality.	Note	that	invocation	of	said
										operations	implies	use	of	key	material	managed	by	the										operations	implies	use	of	key	material	managed	by	the
										authenticator.										authenticator.

			WebAuthn	Client			WebAuthn	Client

										See	Conforming	User	Agent.										See	Conforming	User	Agent.

4.	Web	Authentication	API4.	Web	Authentication	API

			This	section	normatively	specifies	the	API	for	creating	and	using			This	section	normatively	specifies	the	API	for	creating	and	using
			scoped	credentials.	The	basic	idea	is	that	the	credentials	belong	to			scoped	credentials.	The	basic	idea	is	that	the	credentials	belong	to
			the	user	and	are	managed	by	an	authenticator,	with	which	the	Relying			the	user	and	are	managed	by	an	authenticator,	with	which	the	Relying
			Party	interacts	through	the	client	(consisting	of	the	browser	and			Party	interacts	through	the	client	(consisting	of	the	browser	and
			underlying	OS	platform).	Scripts	can	(with	the	user's	consent)	request			underlying	OS	platform).	Scripts	can	(with	the	user's	consent)	request
			the	browser	to	create	a	new	credential	for	future	use	by	the	Relying			the	browser	to	create	a	new	credential	for	future	use	by	the	Relying
			Party.	Scripts	can	also	request	the	user's	permission	to	perform			Party.	Scripts	can	also	request	the	user's	permission	to	perform
			authentication	operations	with	an	existing	credential.	All	such			authentication	operations	with	an	existing	credential.	All	such
			operations	are	performed	in	the	authenticator	and	are	mediated	by	the			operations	are	performed	in	the	authenticator	and	are	mediated	by	the
			browser	and/or	platform	on	the	user's	behalf.	At	no	point	does	the			browser	and/or	platform	on	the	user's	behalf.	At	no	point	does	the
			script	get	access	to	the	credentials	themselves;	it	only	gets			script	get	access	to	the	credentials	themselves;	it	only	gets
			information	about	the	credentials	in	the	form	of	objects.			information	about	the	credentials	in	the	form	of	objects.

			In	addition	to	the	above	script	interface,	the	authenticator	may			In	addition	to	the	above	script	interface,	the	authenticator	may
			implement	(or	come	with	client	software	that	implements)	a	user			implement	(or	come	with	client	software	that	implements)	a	user
			interface	for	management.	Such	an	interface	may	be	used,	for	example,			interface	for	management.	Such	an	interface	may	be	used,	for	example,
			to	reset	the	authenticator	to	a	clean	state	or	to	inspect	the	current			to	reset	the	authenticator	to	a	clean	state	or	to	inspect	the	current
			state	of	the	authenticator.	In	other	words,	such	an	interface	is			state	of	the	authenticator.	In	other	words,	such	an	interface	is
			similar	to	the	user	interfaces	provided	by	browsers	for	managing	user			similar	to	the	user	interfaces	provided	by	browsers	for	managing	user
			state	such	as	history,	saved	passwords	and	cookies.	Authenticator			state	such	as	history,	saved	passwords	and	cookies.	Authenticator
			management	actions	such	as	credential	deletion	are	considered	to	be	the			management	actions	such	as	credential	deletion	are	considered	to	be	the
			responsibility	of	such	a	user	interface	and	are	deliberately	omitted			responsibility	of	such	a	user	interface	and	are	deliberately	omitted
			from	the	API	exposed	to	scripts.			from	the	API	exposed	to	scripts.

			The	security	properties	of	this	API	are	provided	by	the	client	and	the			The	security	properties	of	this	API	are	provided	by	the	client	and	the
			authenticator	working	together.	The	authenticator,	which	holds	and			authenticator	working	together.	The	authenticator,	which	holds	and
			manages	credentials,	ensures	that	all	operations	are	scoped	to	a			manages	credentials,	ensures	that	all	operations	are	scoped	to	a
			particular	origin,	and	cannot	be	replayed	against	a	different	origin,			particular	origin,	and	cannot	be	replayed	against	a	different	origin,
			by	incorporating	the	origin	in	its	responses.	Specifically,	as	defined			by	incorporating	the	origin	in	its	responses.	Specifically,	as	defined
			in	5.2	Signature	Format,	the	full	origin	of	the	requester	is	included,			in	5.2	Signature	Format,	the	full	origin	of	the	requester	is	included,
			and	signed	over,	in	the	attestation	object	produced	when	a	new			and	signed	over,	in	the	attestation	object	produced	when	a	new
			credential	is	created	as	well	as	in	all	assertions	produced	by	WebAuthn			credential	is	created	as	well	as	in	all	assertions	produced	by	WebAuthn
			credentials.			credentials.

			Additionally,	to	maintain	user	privacy	and	prevent	malicious	Relying			Additionally,	to	maintain	user	privacy	and	prevent	malicious	Relying
			Parties	from	probing	for	the	presence	of	credentials	belonging	to	other			Parties	from	probing	for	the	presence	of	credentials	belonging	to	other
			Relying	Parties,	each	credential	is	also	associated	with	a	Relying			Relying	Parties,	each	credential	is	also	associated	with	a	Relying
			Party	Identifier,	or	RP	ID.	This	RP	ID	is	provided	by	the	client	to	the			Party	Identifier,	or	RP	ID.	This	RP	ID	is	provided	by	the	client	to	the
			authenticator	for	all	operations,	and	the	authenticator	ensures	that			authenticator	for	all	operations,	and	the	authenticator	ensures	that
			credentials	created	by	a	Relying	Party	can	only	be	used	in	operations			credentials	created	by	a	Relying	Party	can	only	be	used	in	operations
			requested	by	the	same	RP	ID.	Separating	the	origin	from	the	RP	ID	in			requested	by	the	same	RP	ID.	Separating	the	origin	from	the	RP	ID	in
			this	way	allows	the	API	to	be	used	in	cases	where	a	single	Relying			this	way	allows	the	API	to	be	used	in	cases	where	a	single	Relying
			Party	maintains	multiple	origins.			Party	maintains	multiple	origins.

			The	client	facilitates	these	security	measures	by	providing	correct			The	client	facilitates	these	security	measures	by	providing	correct
			origins	and	RP	IDs	to	the	authenticator	for	each	operation.	Since	this			origins	and	RP	IDs	to	the	authenticator	for	each	operation.	Since	this

9/72



/Users/jehodges/Documents/work/standards/W3C/webauthn/index-vgb-u2f-attestation-0d0fcea.txt,	Top	line:	558

			is	an	integral	part	of	the	WebAuthn	security	model,	user	agents	MUST			is	an	integral	part	of	the	WebAuthn	security	model,	user	agents	MUST
			only	expose	this	API	to	callers	in	secure	contexts,	as	defined	in			only	expose	this	API	to	callers	in	secure	contexts,	as	defined	in
			[secure-contexts].			[secure-contexts].

			The	Web	Authentication	API	is	defined	by	the	union	of	the	Web	IDL			The	Web	Authentication	API	is	defined	by	the	union	of	the	Web	IDL
			fragments	presented	in	the	following	sections.	A	combined	IDL	listing			fragments	presented	in	the	following	sections.	A	combined	IDL	listing
			is	given	in	the	IDL	Index.	The	API	is	defined	as	a	part	of	the			is	given	in	the	IDL	Index.	The	API	is	defined	as	a	part	of	the
			Navigator	interface:			Navigator	interface:
partial	interface	Navigator	{partial	interface	Navigator	{
				readonly	attribute	WebAuthentication	authentication;				readonly	attribute	WebAuthentication	authentication;
};};

		4.1.	WebAuthentication	Interface		4.1.	WebAuthentication	Interface

[SecureContext][SecureContext]
interface	WebAuthentication	{interface	WebAuthentication	{
				Promise	<	ScopedCredentialInfo	>	makeCredential	(				Promise	<	ScopedCredentialInfo	>	makeCredential	(
								Account																																	accountInformation,								Account																																	accountInformation,
								sequence	<	ScopedCredentialParameters	>	cryptoParameters,								sequence	<	ScopedCredentialParameters	>	cryptoParameters,
								BufferSource																												attestationChallenge,								BufferSource																												attestationChallenge,
								optional	ScopedCredentialOptions								options								optional	ScopedCredentialOptions								options
				);				);

				Promise	<	AuthenticationAssertion	>	getAssertion	(				Promise	<	AuthenticationAssertion	>	getAssertion	(
								BufferSource																				assertionChallenge,								BufferSource																				assertionChallenge,
								optional	AssertionOptions							options								optional	AssertionOptions							options
				);				);
};};

			This	interface	has	two	methods,	which	are	described	in	the	following			This	interface	has	two	methods,	which	are	described	in	the	following
			subsections.			subsections.

				4.1.1.	Create	a	new	credential	(makeCredential()	method)				4.1.1.	Create	a	new	credential	(makeCredential()	method)

			With	this	method,	a	script	can	request	the	User	Agent	to	create	a	new			With	this	method,	a	script	can	request	the	User	Agent	to	create	a	new
			credential	of	a	given	type	and	persist	it	to	the	underlying	platform,			credential	of	a	given	type	and	persist	it	to	the	underlying	platform,
			which	may	involve	data	storage	managed	by	the	browser	or	the	OS.	The			which	may	involve	data	storage	managed	by	the	browser	or	the	OS.	The
			user	agent	will	prompt	the	user	to	approve	this	operation.	On	success,			user	agent	will	prompt	the	user	to	approve	this	operation.	On	success,
			the	promise	will	be	resolved	with	a	ScopedCredentialInfo	object			the	promise	will	be	resolved	with	a	ScopedCredentialInfo	object
			describing	the	newly	created	credential.			describing	the	newly	created	credential.

			This	method	takes	the	following	parameters:			This	method	takes	the	following	parameters:
					*	The	accountInformation	parameter	specifies	information	about	the					*	The	accountInformation	parameter	specifies	information	about	the
							user	account	for	which	the	credential	is	being	created.	This	is							user	account	for	which	the	credential	is	being	created.	This	is
							meant	for	later	use	by	the	authenticator	when	it	needs	to	prompt							meant	for	later	use	by	the	authenticator	when	it	needs	to	prompt
							the	user	to	select	a	credential.	An	authenticator	is	only	required							the	user	to	select	a	credential.	An	authenticator	is	only	required
							to	store	one	credential	for	any	given	value	of	accountInformation.							to	store	one	credential	for	any	given	value	of	accountInformation.
							Specifically,	if	an	authenticator	already	has	a	credential	for	the							Specifically,	if	an	authenticator	already	has	a	credential	for	the
							specified	value	of	id	in	accountInformation,	and	if	this	credential							specified	value	of	id	in	accountInformation,	and	if	this	credential
							is	not	listed	in	the	excludeList	member	of	options,	then	after							is	not	listed	in	the	excludeList	member	of	options,	then	after
							successful	execution	of	this	method:							successful	execution	of	this	method:
										+	Any	calls	to	getAssertion()	that	do	not	specify	allowList	will										+	Any	calls	to	getAssertion()	that	do	not	specify	allowList	will
												not	result	in	the	older	credential	being	offered	to	the	user.												not	result	in	the	older	credential	being	offered	to	the	user.
										+	Any	calls	to	getAssertion()	that	specify	the	older	credential										+	Any	calls	to	getAssertion()	that	specify	the	older	credential
												in	the	allowList	may	also	not	result	in	it	being	offered	to												in	the	allowList	may	also	not	result	in	it	being	offered	to
												the	user.												the	user.
					*	The	cryptoParameters	parameter	supplies	information	about	the					*	The	cryptoParameters	parameter	supplies	information	about	the
							desired	properties	of	the	credential	to	be	created.	The	sequence	is							desired	properties	of	the	credential	to	be	created.	The	sequence	is
							ordered	from	most	preferred	to	least	preferred.	The	platform	makes							ordered	from	most	preferred	to	least	preferred.	The	platform	makes
							a	best	effort	to	create	the	most	preferred	credential	that	it	can.							a	best	effort	to	create	the	most	preferred	credential	that	it	can.
					*	The	attestationChallenge	parameter	contains	a	challenge	intended	to					*	The	attestationChallenge	parameter	contains	a	challenge	intended	to
							be	used	for	generating	the	attestation	object	of	the	newly	created							be	used	for	generating	the	attestation	object	of	the	newly	created

/Users/jehodges/Documents/work/standards/W3C/webauthn/index-vgb-u2f-attestation-dc90eab.txt,	Top	line:	558

			is	an	integral	part	of	the	WebAuthn	security	model,	user	agents	MUST			is	an	integral	part	of	the	WebAuthn	security	model,	user	agents	MUST
			only	expose	this	API	to	callers	in	secure	contexts,	as	defined	in			only	expose	this	API	to	callers	in	secure	contexts,	as	defined	in
			[secure-contexts].			[secure-contexts].

			The	Web	Authentication	API	is	defined	by	the	union	of	the	Web	IDL			The	Web	Authentication	API	is	defined	by	the	union	of	the	Web	IDL
			fragments	presented	in	the	following	sections.	A	combined	IDL	listing			fragments	presented	in	the	following	sections.	A	combined	IDL	listing
			is	given	in	the	IDL	Index.	The	API	is	defined	as	a	part	of	the			is	given	in	the	IDL	Index.	The	API	is	defined	as	a	part	of	the
			Navigator	interface:			Navigator	interface:
partial	interface	Navigator	{partial	interface	Navigator	{
				readonly	attribute	WebAuthentication	authentication;				readonly	attribute	WebAuthentication	authentication;
};};

		4.1.	WebAuthentication	Interface		4.1.	WebAuthentication	Interface

[SecureContext][SecureContext]
interface	WebAuthentication	{interface	WebAuthentication	{
				Promise	<	ScopedCredentialInfo	>	makeCredential	(				Promise	<	ScopedCredentialInfo	>	makeCredential	(
								Account																																	accountInformation,								Account																																	accountInformation,
								sequence	<	ScopedCredentialParameters	>	cryptoParameters,								sequence	<	ScopedCredentialParameters	>	cryptoParameters,
								BufferSource																												attestationChallenge,								BufferSource																												attestationChallenge,
								optional	ScopedCredentialOptions								options								optional	ScopedCredentialOptions								options
				);				);

				Promise	<	AuthenticationAssertion	>	getAssertion	(				Promise	<	AuthenticationAssertion	>	getAssertion	(
								BufferSource																				assertionChallenge,								BufferSource																				assertionChallenge,
								optional	AssertionOptions							options								optional	AssertionOptions							options
				);				);
};};

			This	interface	has	two	methods,	which	are	described	in	the	following			This	interface	has	two	methods,	which	are	described	in	the	following
			subsections.			subsections.

				4.1.1.	Create	a	new	credential	(makeCredential()	method)				4.1.1.	Create	a	new	credential	(makeCredential()	method)

			With	this	method,	a	script	can	request	the	User	Agent	to	create	a	new			With	this	method,	a	script	can	request	the	User	Agent	to	create	a	new
			credential	of	a	given	type	and	persist	it	to	the	underlying	platform,			credential	of	a	given	type	and	persist	it	to	the	underlying	platform,
			which	may	involve	data	storage	managed	by	the	browser	or	the	OS.	The			which	may	involve	data	storage	managed	by	the	browser	or	the	OS.	The
			user	agent	will	prompt	the	user	to	approve	this	operation.	On	success,			user	agent	will	prompt	the	user	to	approve	this	operation.	On	success,
			the	promise	will	be	resolved	with	a	ScopedCredentialInfo	object			the	promise	will	be	resolved	with	a	ScopedCredentialInfo	object
			describing	the	newly	created	credential.			describing	the	newly	created	credential.

			This	method	takes	the	following	parameters:			This	method	takes	the	following	parameters:
					*	The	accountInformation	parameter	specifies	information	about	the					*	The	accountInformation	parameter	specifies	information	about	the
							user	account	for	which	the	credential	is	being	created.	This	is							user	account	for	which	the	credential	is	being	created.	This	is
							meant	for	later	use	by	the	authenticator	when	it	needs	to	prompt							meant	for	later	use	by	the	authenticator	when	it	needs	to	prompt
							the	user	to	select	a	credential.	An	authenticator	is	only	required							the	user	to	select	a	credential.	An	authenticator	is	only	required
							to	store	one	credential	for	any	given	value	of	accountInformation.							to	store	one	credential	for	any	given	value	of	accountInformation.
							Specifically,	if	an	authenticator	already	has	a	credential	for	the							Specifically,	if	an	authenticator	already	has	a	credential	for	the
							specified	value	of	id	in	accountInformation,	and	if	this	credential							specified	value	of	id	in	accountInformation,	and	if	this	credential
							is	not	listed	in	the	excludeList	member	of	options,	then	after							is	not	listed	in	the	excludeList	member	of	options,	then	after
							successful	execution	of	this	method:							successful	execution	of	this	method:
										+	Any	calls	to	getAssertion()	that	do	not	specify	allowList	will										+	Any	calls	to	getAssertion()	that	do	not	specify	allowList	will
												not	result	in	the	older	credential	being	offered	to	the	user.												not	result	in	the	older	credential	being	offered	to	the	user.
										+	Any	calls	to	getAssertion()	that	specify	the	older	credential										+	Any	calls	to	getAssertion()	that	specify	the	older	credential
												in	the	allowList	may	also	not	result	in	it	being	offered	to												in	the	allowList	may	also	not	result	in	it	being	offered	to
												the	user.												the	user.
					*	The	cryptoParameters	parameter	supplies	information	about	the					*	The	cryptoParameters	parameter	supplies	information	about	the
							desired	properties	of	the	credential	to	be	created.	The	sequence	is							desired	properties	of	the	credential	to	be	created.	The	sequence	is
							ordered	from	most	preferred	to	least	preferred.	The	platform	makes							ordered	from	most	preferred	to	least	preferred.	The	platform	makes
							a	best	effort	to	create	the	most	preferred	credential	that	it	can.							a	best	effort	to	create	the	most	preferred	credential	that	it	can.
					*	The	attestationChallenge	parameter	contains	a	challenge	intended	to					*	The	attestationChallenge	parameter	contains	a	challenge	intended	to
							be	used	for	generating	the	attestation	object	of	the	newly	created							be	used	for	generating	the	attestation	object	of	the	newly	created

10/72



/Users/jehodges/Documents/work/standards/W3C/webauthn/index-vgb-u2f-attestation-0d0fcea.txt,	Top	line:	620

							credential.							credential.
					*	The	optional	options	parameter	specifies	additional	options,	as					*	The	optional	options	parameter	specifies	additional	options,	as
							described	in	4.5	Additional	options	for	Credential	Generation							described	in	4.5	Additional	options	for	Credential	Generation
							(dictionary	ScopedCredentialOptions).							(dictionary	ScopedCredentialOptions).

			When	this	method	is	invoked,	the	user	agent	MUST	execute	the	following			When	this	method	is	invoked,	the	user	agent	MUST	execute	the	following
			algorithm:			algorithm:
				1.	If	the	timeoutSeconds	member	of	options	is	present,	check	if	its				1.	If	the	timeoutSeconds	member	of	options	is	present,	check	if	its
							value	lies	within	a	reasonable	range	as	defined	by	the	platform	and							value	lies	within	a	reasonable	range	as	defined	by	the	platform	and
							if	not,	correct	it	to	the	closest	value	lying	within	that	range.							if	not,	correct	it	to	the	closest	value	lying	within	that	range.
							Set	adjustedTimeout	to	this	adjusted	value.	If	timeoutSeconds	was							Set	adjustedTimeout	to	this	adjusted	value.	If	timeoutSeconds	was
							not	specified,	then	set	adjustedTimeout	to	a	platform-specific							not	specified,	then	set	adjustedTimeout	to	a	platform-specific
							default.							default.
				2.	Let	promise	be	a	new	Promise.	Return	promise	and	start	a	timer	for				2.	Let	promise	be	a	new	Promise.	Return	promise	and	start	a	timer	for
							adjustedTimeout	seconds.	Then	asynchronously	continue	executing	the							adjustedTimeout	seconds.	Then	asynchronously	continue	executing	the
							following	steps.	If	any	fatal	error	is	encountered	in	this	process							following	steps.	If	any	fatal	error	is	encountered	in	this	process
							other	than	the	ones	enumerated	below,	cancel	the	timer,	reject							other	than	the	ones	enumerated	below,	cancel	the	timer,	reject
							promise	with	a	DOMException	whose	name	is	"UnknownError",	and							promise	with	a	DOMException	whose	name	is	"UnknownError",	and
							terminate	this	algorithm.							terminate	this	algorithm.
				3.	Set	callerOrigin	to	the	current	settings	object's	origin.	If				3.	Set	callerOrigin	to	the	current	settings	object's	origin.	If
							callerOrigin	is	an	opaque	origin,	reject	promise	with	a							callerOrigin	is	an	opaque	origin,	reject	promise	with	a
							DOMException	whose	name	is	"NotAllowedError",	and	terminate	this							DOMException	whose	name	is	"NotAllowedError",	and	terminate	this
							algorithm.	Otherwise,							algorithm.	Otherwise,
										+	If	the	rpId	member	of	options	is	not	present,	then	set	rpId	to										+	If	the	rpId	member	of	options	is	not	present,	then	set	rpId	to
												callerOrigin.												callerOrigin.
										+	If	the	rpId	member	of	options	is	present,	then	invoke	the										+	If	the	rpId	member	of	options	is	present,	then	invoke	the
												procedure	used	for	relaxing	the	same-origin	restriction	by												procedure	used	for	relaxing	the	same-origin	restriction	by
												setting	the	document.domain	attribute,	using	rpId	as	the	given												setting	the	document.domain	attribute,	using	rpId	as	the	given
												value	but	without	changing	the	current	document's	domain.	If												value	but	without	changing	the	current	document's	domain.	If
												no	errors	are	thrown,	set	rpId	to	the	value	of	host	as												no	errors	are	thrown,	set	rpId	to	the	value	of	host	as
												computed	by	this	procedure.	Otherwise,	reject	promise	with	a												computed	by	this	procedure.	Otherwise,	reject	promise	with	a
												DOMException	whose	name	is	"SecurityError",	and	terminate	this												DOMException	whose	name	is	"SecurityError",	and	terminate	this
												algorithm.												algorithm.
				4.	Process	each	element	of	cryptoParameters	using	the	following	steps,				4.	Process	each	element	of	cryptoParameters	using	the	following	steps,
							to	produce	a	new	sequence	normalizedParameters.							to	produce	a	new	sequence	normalizedParameters.
										+	Let	current	be	the	currently	selected	element	of										+	Let	current	be	the	currently	selected	element	of
												cryptoParameters.												cryptoParameters.
										+	If	current.type	does	not	contain	a	ScopedCredentialType										+	If	current.type	does	not	contain	a	ScopedCredentialType
												supported	by	this	implementation,	then	stop	processing	current												supported	by	this	implementation,	then	stop	processing	current
												and	move	on	to	the	next	element	in	cryptoParameters.												and	move	on	to	the	next	element	in	cryptoParameters.
										+	Let	normalizedAlgorithm	be	the	result	of	normalizing	an										+	Let	normalizedAlgorithm	be	the	result	of	normalizing	an
												algorithm	[WebCryptoAPI],	with	alg	set	to	current.algorithm												algorithm	[WebCryptoAPI],	with	alg	set	to	current.algorithm
												and	op	set	to	'generateKey'.	If	an	error	occurs	during	this												and	op	set	to	'generateKey'.	If	an	error	occurs	during	this
												procedure,	then	stop	processing	current	and	move	on	to	the												procedure,	then	stop	processing	current	and	move	on	to	the
												next	element	in	cryptoParameters.												next	element	in	cryptoParameters.
										+	Add	a	new	object	of	type	ScopedCredentialParameters	to										+	Add	a	new	object	of	type	ScopedCredentialParameters	to
												normalizedParameters,	with	type	set	to	current.type	and												normalizedParameters,	with	type	set	to	current.type	and
												algorithm	set	to	normalizedAlgorithm.												algorithm	set	to	normalizedAlgorithm.
				5.	If	normalizedAlgorithm	is	empty	and	cryptoParameters	was	not	empty,				5.	If	normalizedAlgorithm	is	empty	and	cryptoParameters	was	not	empty,
							cancel	the	timer	started	in	step	2,	reject	promise	with	a							cancel	the	timer	started	in	step	2,	reject	promise	with	a
							DOMException	whose	name	is	"NotSupportedError",	and	terminate	this							DOMException	whose	name	is	"NotSupportedError",	and	terminate	this
							algorithm.							algorithm.
				6.	If	the	extensions	member	of	options	is	present,	process	any				6.	If	the	extensions	member	of	options	is	present,	process	any
							extensions	supported	by	this	client	platform,	to	produce	the							extensions	supported	by	this	client	platform,	to	produce	the
							extension	data	that	needs	to	be	sent	to	the	authenticator.	If	an							extension	data	that	needs	to	be	sent	to	the	authenticator.	If	an
							error	is	encountered	while	processing	an	extension,	skip	that							error	is	encountered	while	processing	an	extension,	skip	that
							extension	and	do	not	produce	any	extension	data	for	it.	Call	the							extension	and	do	not	produce	any	extension	data	for	it.	Call	the
							result	of	this	processing	clientExtensions.							result	of	this	processing	clientExtensions.
				7.	Use	attestationChallenge,	callerOrigin	and	rpId,	along	with	the				7.	Use	attestationChallenge,	callerOrigin	and	rpId,	along	with	the
							token	binding	key	associated	with	callerOrigin	(if	any),	to	create							token	binding	key	associated	with	callerOrigin	(if	any),	to	create
							a	ClientData	structure	representing	this	request.	Choose	a	hash							a	ClientData	structure	representing	this	request.	Choose	a	hash
							algorithm	for	hashAlg	and	compute	the	clientDataJSON	and							algorithm	for	hashAlg	and	compute	the	clientDataJSON	and

/Users/jehodges/Documents/work/standards/W3C/webauthn/index-vgb-u2f-attestation-dc90eab.txt,	Top	line:	620

							credential.							credential.
					*	The	optional	options	parameter	specifies	additional	options,	as					*	The	optional	options	parameter	specifies	additional	options,	as
							described	in	4.5	Additional	options	for	Credential	Generation							described	in	4.5	Additional	options	for	Credential	Generation
							(dictionary	ScopedCredentialOptions).							(dictionary	ScopedCredentialOptions).

			When	this	method	is	invoked,	the	user	agent	MUST	execute	the	following			When	this	method	is	invoked,	the	user	agent	MUST	execute	the	following
			algorithm:			algorithm:
				1.	If	the	timeoutSeconds	member	of	options	is	present,	check	if	its				1.	If	the	timeoutSeconds	member	of	options	is	present,	check	if	its
							value	lies	within	a	reasonable	range	as	defined	by	the	platform	and							value	lies	within	a	reasonable	range	as	defined	by	the	platform	and
							if	not,	correct	it	to	the	closest	value	lying	within	that	range.							if	not,	correct	it	to	the	closest	value	lying	within	that	range.
							Set	adjustedTimeout	to	this	adjusted	value.	If	timeoutSeconds	was							Set	adjustedTimeout	to	this	adjusted	value.	If	timeoutSeconds	was
							not	specified,	then	set	adjustedTimeout	to	a	platform-specific							not	specified,	then	set	adjustedTimeout	to	a	platform-specific
							default.							default.
				2.	Let	promise	be	a	new	Promise.	Return	promise	and	start	a	timer	for				2.	Let	promise	be	a	new	Promise.	Return	promise	and	start	a	timer	for
							adjustedTimeout	seconds.	Then	asynchronously	continue	executing	the							adjustedTimeout	seconds.	Then	asynchronously	continue	executing	the
							following	steps.	If	any	fatal	error	is	encountered	in	this	process							following	steps.	If	any	fatal	error	is	encountered	in	this	process
							other	than	the	ones	enumerated	below,	cancel	the	timer,	reject							other	than	the	ones	enumerated	below,	cancel	the	timer,	reject
							promise	with	a	DOMException	whose	name	is	"UnknownError",	and							promise	with	a	DOMException	whose	name	is	"UnknownError",	and
							terminate	this	algorithm.							terminate	this	algorithm.
				3.	Set	callerOrigin	to	the	current	settings	object's	origin.	If				3.	Set	callerOrigin	to	the	current	settings	object's	origin.	If
							callerOrigin	is	an	opaque	origin,	reject	promise	with	a							callerOrigin	is	an	opaque	origin,	reject	promise	with	a
							DOMException	whose	name	is	"NotAllowedError",	and	terminate	this							DOMException	whose	name	is	"NotAllowedError",	and	terminate	this
							algorithm.	Otherwise,							algorithm.	Otherwise,
										+	If	the	rpId	member	of	options	is	not	present,	then	set	rpId	to										+	If	the	rpId	member	of	options	is	not	present,	then	set	rpId	to
												callerOrigin.												callerOrigin.
										+	If	the	rpId	member	of	options	is	present,	then	invoke	the										+	If	the	rpId	member	of	options	is	present,	then	invoke	the
												procedure	used	for	relaxing	the	same-origin	restriction	by												procedure	used	for	relaxing	the	same-origin	restriction	by
												setting	the	document.domain	attribute,	using	rpId	as	the	given												setting	the	document.domain	attribute,	using	rpId	as	the	given
												value	but	without	changing	the	current	document's	domain.	If												value	but	without	changing	the	current	document's	domain.	If
												no	errors	are	thrown,	set	rpId	to	the	value	of	host	as												no	errors	are	thrown,	set	rpId	to	the	value	of	host	as
												computed	by	this	procedure.	Otherwise,	reject	promise	with	a												computed	by	this	procedure.	Otherwise,	reject	promise	with	a
												DOMException	whose	name	is	"SecurityError",	and	terminate	this												DOMException	whose	name	is	"SecurityError",	and	terminate	this
												algorithm.												algorithm.
				4.	Process	each	element	of	cryptoParameters	using	the	following	steps,				4.	Process	each	element	of	cryptoParameters	using	the	following	steps,
							to	produce	a	new	sequence	normalizedParameters.							to	produce	a	new	sequence	normalizedParameters.
										+	Let	current	be	the	currently	selected	element	of										+	Let	current	be	the	currently	selected	element	of
												cryptoParameters.												cryptoParameters.
										+	If	current.type	does	not	contain	a	ScopedCredentialType										+	If	current.type	does	not	contain	a	ScopedCredentialType
												supported	by	this	implementation,	then	stop	processing	current												supported	by	this	implementation,	then	stop	processing	current
												and	move	on	to	the	next	element	in	cryptoParameters.												and	move	on	to	the	next	element	in	cryptoParameters.
										+	Let	normalizedAlgorithm	be	the	result	of	normalizing	an										+	Let	normalizedAlgorithm	be	the	result	of	normalizing	an
												algorithm	[WebCryptoAPI],	with	alg	set	to	current.algorithm												algorithm	[WebCryptoAPI],	with	alg	set	to	current.algorithm
												and	op	set	to	'generateKey'.	If	an	error	occurs	during	this												and	op	set	to	'generateKey'.	If	an	error	occurs	during	this
												procedure,	then	stop	processing	current	and	move	on	to	the												procedure,	then	stop	processing	current	and	move	on	to	the
												next	element	in	cryptoParameters.												next	element	in	cryptoParameters.
										+	Add	a	new	object	of	type	ScopedCredentialParameters	to										+	Add	a	new	object	of	type	ScopedCredentialParameters	to
												normalizedParameters,	with	type	set	to	current.type	and												normalizedParameters,	with	type	set	to	current.type	and
												algorithm	set	to	normalizedAlgorithm.												algorithm	set	to	normalizedAlgorithm.
				5.	If	normalizedAlgorithm	is	empty	and	cryptoParameters	was	not	empty,				5.	If	normalizedAlgorithm	is	empty	and	cryptoParameters	was	not	empty,
							cancel	the	timer	started	in	step	2,	reject	promise	with	a							cancel	the	timer	started	in	step	2,	reject	promise	with	a
							DOMException	whose	name	is	"NotSupportedError",	and	terminate	this							DOMException	whose	name	is	"NotSupportedError",	and	terminate	this
							algorithm.							algorithm.
				6.	If	the	extensions	member	of	options	is	present,	process	any				6.	If	the	extensions	member	of	options	is	present,	process	any
							extensions	supported	by	this	client	platform,	to	produce	the							extensions	supported	by	this	client	platform,	to	produce	the
							extension	data	that	needs	to	be	sent	to	the	authenticator.	If	an							extension	data	that	needs	to	be	sent	to	the	authenticator.	If	an
							error	is	encountered	while	processing	an	extension,	skip	that							error	is	encountered	while	processing	an	extension,	skip	that
							extension	and	do	not	produce	any	extension	data	for	it.	Call	the							extension	and	do	not	produce	any	extension	data	for	it.	Call	the
							result	of	this	processing	clientExtensions.							result	of	this	processing	clientExtensions.
				7.	Use	attestationChallenge,	callerOrigin	and	rpId,	along	with	the				7.	Use	attestationChallenge,	callerOrigin	and	rpId,	along	with	the
							token	binding	key	associated	with	callerOrigin	(if	any),	to	create							token	binding	key	associated	with	callerOrigin	(if	any),	to	create
							a	ClientData	structure	representing	this	request.	Choose	a	hash							a	ClientData	structure	representing	this	request.	Choose	a	hash
							algorithm	for	hashAlg	and	compute	the	clientDataJSON	and							algorithm	for	hashAlg	and	compute	the	clientDataJSON	and

11/72



/Users/jehodges/Documents/work/standards/W3C/webauthn/index-vgb-u2f-attestation-0d0fcea.txt,	Top	line:	682

							clientDataHash.							clientDataHash.
				8.	Initialize	issuedRequests	and	currentlyAvailableAuthenticators	to				8.	Initialize	issuedRequests	and	currentlyAvailableAuthenticators	to
							empty	lists.							empty	lists.
				9.	For	each	authenticator	currently	available	on	this	platform,	add				9.	For	each	authenticator	currently	available	on	this	platform,	add
							the	authenticator	to	currentlyAvailableAuthenticators	unless	the							the	authenticator	to	currentlyAvailableAuthenticators	unless	the
							attachment	member	of	options	is	present.	In	that	case,	let							attachment	member	of	options	is	present.	In	that	case,	let
							attachment	be	attachment,	and	add	the	authenticator	to							attachment	be	attachment,	and	add	the	authenticator	to
							currentlyAvailableAuthenticators	if	its	attachment	modality	matches							currentlyAvailableAuthenticators	if	its	attachment	modality	matches
							attachment.							attachment.
			10.	For	each	authenticator	in	currentlyAvailableAuthenticators:			10.	For	each	authenticator	in	currentlyAvailableAuthenticators:
							asynchronously	invoke	the	authenticatorMakeCredential	operation	on							asynchronously	invoke	the	authenticatorMakeCredential	operation	on
							that	authenticator	with	rpId,	clientDataHash,	accountInformation,							that	authenticator	with	rpId,	clientDataHash,	accountInformation,
							normalizedParameters,	excludeList	and	clientExtensions	as							normalizedParameters,	excludeList	and	clientExtensions	as
							parameters.	Add	a	corresponding	entry	to	issuedRequests.							parameters.	Add	a	corresponding	entry	to	issuedRequests.
										+	For	each	credential	C	in	the	excludeList	member	of	options										+	For	each	credential	C	in	the	excludeList	member	of	options
												that	has	a	non-empty	transports	list,	optionally	use	only	the												that	has	a	non-empty	transports	list,	optionally	use	only	the
												specified	transports	to	test	for	the	existence	of	C.												specified	transports	to	test	for	the	existence	of	C.
			11.	While	issuedRequests	is	not	empty,	perform	the	following	actions			11.	While	issuedRequests	is	not	empty,	perform	the	following	actions
							depending	upon	the	adjustedTimeout	timer	and	responses	from	the							depending	upon	the	adjustedTimeout	timer	and	responses	from	the
							authenticators:							authenticators:
										+	If	the	adjustedTimeout	timer	expires,	then	for	each	entry	in										+	If	the	adjustedTimeout	timer	expires,	then	for	each	entry	in
												issuedRequests	invoke	the	authenticatorCancel	operation	on												issuedRequests	invoke	the	authenticatorCancel	operation	on
												that	authenticator	and	remove	its	entry	from	the	list.												that	authenticator	and	remove	its	entry	from	the	list.
										+	If	any	authenticator	returns	a	status	indicating	that	the	user										+	If	any	authenticator	returns	a	status	indicating	that	the	user
												cancelled	the	operation,	delete	that	authenticator's	entry												cancelled	the	operation,	delete	that	authenticator's	entry
												from	issuedRequests.	For	each	remaining	entry	in												from	issuedRequests.	For	each	remaining	entry	in
												issuedRequests	invoke	the	authenticatorCancel	operation	on												issuedRequests	invoke	the	authenticatorCancel	operation	on
												that	authenticator	and	remove	its	entry	from	the	list.												that	authenticator	and	remove	its	entry	from	the	list.
										+	If	any	authenticator	returns	an	error	status,	delete	the										+	If	any	authenticator	returns	an	error	status,	delete	the
												corresponding	entry	from	issuedRequests.												corresponding	entry	from	issuedRequests.
										+	If	any	authenticator	indicates	success:										+	If	any	authenticator	indicates	success:
															o	Remove	this	authenticator's	entry	from	issuedRequests.															o	Remove	this	authenticator's	entry	from	issuedRequests.
															o	Create	a	new	ScopedCredentialInfo	object	named	value	and															o	Create	a	new	ScopedCredentialInfo	object	named	value	and
																	populate	its	fields	with	the	values	returned	from	the																	populate	its	fields	with	the	values	returned	from	the
																	authenticator	as	well	as	the	clientDataJSON	computed																	authenticator	as	well	as	the	clientDataJSON	computed
																	earlier.																	earlier.
															o	For	each	remaining	entry	in	issuedRequests	invoke	the															o	For	each	remaining	entry	in	issuedRequests	invoke	the
																	authenticatorCancel	operation	on	that	authenticator	and																	authenticatorCancel	operation	on	that	authenticator	and
																	remove	its	entry	from	the	list.																	remove	its	entry	from	the	list.
															o	Resolve	promise	with	value	and	terminate	this	algorithm.															o	Resolve	promise	with	value	and	terminate	this	algorithm.
			12.	Reject	promise	with	a	DOMException	whose	name	is	"NotAllowedError",			12.	Reject	promise	with	a	DOMException	whose	name	is	"NotAllowedError",
							and	terminate	this	algorithm.							and	terminate	this	algorithm.

			During	the	above	process,	the	user	agent	SHOULD	show	some	UI	to	the			During	the	above	process,	the	user	agent	SHOULD	show	some	UI	to	the
			user	to	guide	them	in	the	process	of	selecting	and	authorizing	an			user	to	guide	them	in	the	process	of	selecting	and	authorizing	an
			authenticator.			authenticator.

				4.1.2.	Use	an	existing	credential	(getAssertion()	method)				4.1.2.	Use	an	existing	credential	(getAssertion()	method)

			This	method	is	used	to	discover	and	use	an	existing	scoped	credential,			This	method	is	used	to	discover	and	use	an	existing	scoped	credential,
			with	the	user's	consent.	The	script	optionally	specifies	some	criteria			with	the	user's	consent.	The	script	optionally	specifies	some	criteria
			to	indicate	what	credentials	are	acceptable	to	it.	The	user	agent			to	indicate	what	credentials	are	acceptable	to	it.	The	user	agent
			and/or	platform	locates	credentials	matching	the	specified	criteria,			and/or	platform	locates	credentials	matching	the	specified	criteria,
			and	guides	the	user	to	pick	one	that	the	script	should	be	allowed	to			and	guides	the	user	to	pick	one	that	the	script	should	be	allowed	to
			use.	The	user	may	choose	not	to	provide	a	credential	even	if	one	is			use.	The	user	may	choose	not	to	provide	a	credential	even	if	one	is
			present,	for	example	to	maintain	privacy.			present,	for	example	to	maintain	privacy.

			This	method	takes	the	following	parameters:			This	method	takes	the	following	parameters:
					*	The	assertionChallenge	parameter	contains	a	challenge	that	the					*	The	assertionChallenge	parameter	contains	a	challenge	that	the
							selected	authenticator	is	expected	to	sign	to	produce	the							selected	authenticator	is	expected	to	sign	to	produce	the
							assertion.							assertion.
					*	The	optional	options	parameter	specifies	additional	options,	as					*	The	optional	options	parameter	specifies	additional	options,	as

/Users/jehodges/Documents/work/standards/W3C/webauthn/index-vgb-u2f-attestation-dc90eab.txt,	Top	line:	682

							clientDataHash.							clientDataHash.
				8.	Initialize	issuedRequests	and	currentlyAvailableAuthenticators	to				8.	Initialize	issuedRequests	and	currentlyAvailableAuthenticators	to
							empty	lists.							empty	lists.
				9.	For	each	authenticator	currently	available	on	this	platform,	add				9.	For	each	authenticator	currently	available	on	this	platform,	add
							the	authenticator	to	currentlyAvailableAuthenticators	unless	the							the	authenticator	to	currentlyAvailableAuthenticators	unless	the
							attachment	member	of	options	is	present.	In	that	case,	let							attachment	member	of	options	is	present.	In	that	case,	let
							attachment	be	attachment,	and	add	the	authenticator	to							attachment	be	attachment,	and	add	the	authenticator	to
							currentlyAvailableAuthenticators	if	its	attachment	modality	matches							currentlyAvailableAuthenticators	if	its	attachment	modality	matches
							attachment.							attachment.
			10.	For	each	authenticator	in	currentlyAvailableAuthenticators:			10.	For	each	authenticator	in	currentlyAvailableAuthenticators:
							asynchronously	invoke	the	authenticatorMakeCredential	operation	on							asynchronously	invoke	the	authenticatorMakeCredential	operation	on
							that	authenticator	with	rpId,	clientDataHash,	accountInformation,							that	authenticator	with	rpId,	clientDataHash,	accountInformation,
							normalizedParameters,	excludeList	and	clientExtensions	as							normalizedParameters,	excludeList	and	clientExtensions	as
							parameters.	Add	a	corresponding	entry	to	issuedRequests.							parameters.	Add	a	corresponding	entry	to	issuedRequests.
										+	For	each	credential	C	in	the	excludeList	member	of	options										+	For	each	credential	C	in	the	excludeList	member	of	options
												that	has	a	non-empty	transports	list,	optionally	use	only	the												that	has	a	non-empty	transports	list,	optionally	use	only	the
												specified	transports	to	test	for	the	existence	of	C.												specified	transports	to	test	for	the	existence	of	C.
			11.	While	issuedRequests	is	not	empty,	perform	the	following	actions			11.	While	issuedRequests	is	not	empty,	perform	the	following	actions
							depending	upon	the	adjustedTimeout	timer	and	responses	from	the							depending	upon	the	adjustedTimeout	timer	and	responses	from	the
							authenticators:							authenticators:
										+	If	the	adjustedTimeout	timer	expires,	then	for	each	entry	in										+	If	the	adjustedTimeout	timer	expires,	then	for	each	entry	in
												issuedRequests	invoke	the	authenticatorCancel	operation	on												issuedRequests	invoke	the	authenticatorCancel	operation	on
												that	authenticator	and	remove	its	entry	from	the	list.												that	authenticator	and	remove	its	entry	from	the	list.
										+	If	any	authenticator	returns	a	status	indicating	that	the	user										+	If	any	authenticator	returns	a	status	indicating	that	the	user
												cancelled	the	operation,	delete	that	authenticator's	entry												cancelled	the	operation,	delete	that	authenticator's	entry
												from	issuedRequests.	For	each	remaining	entry	in												from	issuedRequests.	For	each	remaining	entry	in
												issuedRequests	invoke	the	authenticatorCancel	operation	on												issuedRequests	invoke	the	authenticatorCancel	operation	on
												that	authenticator	and	remove	its	entry	from	the	list.												that	authenticator	and	remove	its	entry	from	the	list.
										+	If	any	authenticator	returns	an	error	status,	delete	the										+	If	any	authenticator	returns	an	error	status,	delete	the
												corresponding	entry	from	issuedRequests.												corresponding	entry	from	issuedRequests.
										+	If	any	authenticator	indicates	success:										+	If	any	authenticator	indicates	success:
															o	Remove	this	authenticator's	entry	from	issuedRequests.															o	Remove	this	authenticator's	entry	from	issuedRequests.
															o	Create	a	new	ScopedCredentialInfo	object	named	value	and															o	Create	a	new	ScopedCredentialInfo	object	named	value	and
																	populate	its	fields	with	the	values	returned	from	the																	populate	its	fields	with	the	values	returned	from	the
																	authenticator	as	well	as	the	clientDataJSON	computed																	authenticator	as	well	as	the	clientDataJSON	computed
																	earlier.																	earlier.
															o	For	each	remaining	entry	in	issuedRequests	invoke	the															o	For	each	remaining	entry	in	issuedRequests	invoke	the
																	authenticatorCancel	operation	on	that	authenticator	and																	authenticatorCancel	operation	on	that	authenticator	and
																	remove	its	entry	from	the	list.																	remove	its	entry	from	the	list.
															o	Resolve	promise	with	value	and	terminate	this	algorithm.															o	Resolve	promise	with	value	and	terminate	this	algorithm.
			12.	Reject	promise	with	a	DOMException	whose	name	is	"NotAllowedError",			12.	Reject	promise	with	a	DOMException	whose	name	is	"NotAllowedError",
							and	terminate	this	algorithm.							and	terminate	this	algorithm.

			During	the	above	process,	the	user	agent	SHOULD	show	some	UI	to	the			During	the	above	process,	the	user	agent	SHOULD	show	some	UI	to	the
			user	to	guide	them	in	the	process	of	selecting	and	authorizing	an			user	to	guide	them	in	the	process	of	selecting	and	authorizing	an
			authenticator.			authenticator.

				4.1.2.	Use	an	existing	credential	(getAssertion()	method)				4.1.2.	Use	an	existing	credential	(getAssertion()	method)

			This	method	is	used	to	discover	and	use	an	existing	scoped	credential,			This	method	is	used	to	discover	and	use	an	existing	scoped	credential,
			with	the	user's	consent.	The	script	optionally	specifies	some	criteria			with	the	user's	consent.	The	script	optionally	specifies	some	criteria
			to	indicate	what	credentials	are	acceptable	to	it.	The	user	agent			to	indicate	what	credentials	are	acceptable	to	it.	The	user	agent
			and/or	platform	locates	credentials	matching	the	specified	criteria,			and/or	platform	locates	credentials	matching	the	specified	criteria,
			and	guides	the	user	to	pick	one	that	the	script	should	be	allowed	to			and	guides	the	user	to	pick	one	that	the	script	should	be	allowed	to
			use.	The	user	may	choose	not	to	provide	a	credential	even	if	one	is			use.	The	user	may	choose	not	to	provide	a	credential	even	if	one	is
			present,	for	example	to	maintain	privacy.			present,	for	example	to	maintain	privacy.

			This	method	takes	the	following	parameters:			This	method	takes	the	following	parameters:
					*	The	assertionChallenge	parameter	contains	a	challenge	that	the					*	The	assertionChallenge	parameter	contains	a	challenge	that	the
							selected	authenticator	is	expected	to	sign	to	produce	the							selected	authenticator	is	expected	to	sign	to	produce	the
							assertion.							assertion.
					*	The	optional	options	parameter	specifies	additional	options,	as					*	The	optional	options	parameter	specifies	additional	options,	as

12/72



/Users/jehodges/Documents/work/standards/W3C/webauthn/index-vgb-u2f-attestation-0d0fcea.txt,	Top	line:	744

							described	in	4.7	Additional	options	for	Assertion	Generation							described	in	4.7	Additional	options	for	Assertion	Generation
							(dictionary	AssertionOptions).							(dictionary	AssertionOptions).

			When	this	method	is	invoked,	the	user	agent	MUST	execute	the	following			When	this	method	is	invoked,	the	user	agent	MUST	execute	the	following
			algorithm:			algorithm:
				1.	If	the	timeoutSeconds	member	of	options	is	present,	check	if	its				1.	If	the	timeoutSeconds	member	of	options	is	present,	check	if	its
							value	lies	within	a	reasonable	range	as	defined	by	the	platform	and							value	lies	within	a	reasonable	range	as	defined	by	the	platform	and
							if	not,	correct	it	to	the	closest	value	lying	within	that	range.							if	not,	correct	it	to	the	closest	value	lying	within	that	range.
							Set	adjustedTimeout	to	this	adjusted	value.	If	timeoutSeconds	is							Set	adjustedTimeout	to	this	adjusted	value.	If	timeoutSeconds	is
							not	present,	then	set	adjustedTimeout	to	a	platform-specific							not	present,	then	set	adjustedTimeout	to	a	platform-specific
							default.							default.
				2.	Let	promise	be	a	new	Promise.	Return	promise	and	start	a	timer	for				2.	Let	promise	be	a	new	Promise.	Return	promise	and	start	a	timer	for
							adjustedTimeout	seconds.	Then	asynchronously	continue	executing	the							adjustedTimeout	seconds.	Then	asynchronously	continue	executing	the
							following	steps.	If	any	fatal	error	is	encountered	in	this	process							following	steps.	If	any	fatal	error	is	encountered	in	this	process
							other	than	the	ones	enumerated	below,	cancel	the	timer,	reject							other	than	the	ones	enumerated	below,	cancel	the	timer,	reject
							promise	with	a	DOMException	whose	name	is	"UnknownError",	and							promise	with	a	DOMException	whose	name	is	"UnknownError",	and
							terminate	this	algorithm.							terminate	this	algorithm.
				3.	Set	callerOrigin	to	the	current	settings	object's	origin.	If				3.	Set	callerOrigin	to	the	current	settings	object's	origin.	If
							callerOrigin	is	an	opaque	origin,	reject	promise	with	a							callerOrigin	is	an	opaque	origin,	reject	promise	with	a
							DOMException	whose	name	is	"NotAllowedError",	and	terminate	this							DOMException	whose	name	is	"NotAllowedError",	and	terminate	this
							algorithm.	Otherwise,							algorithm.	Otherwise,
										+	If	the	rpId	member	of	options	is	not	present,	then	set	rpId	to										+	If	the	rpId	member	of	options	is	not	present,	then	set	rpId	to
												callerOrigin.												callerOrigin.
										+	If	the	rpId	member	of	options	is	present,	then	invoke	the										+	If	the	rpId	member	of	options	is	present,	then	invoke	the
												procedure	used	for	relaxing	the	same-origin	restriction	by												procedure	used	for	relaxing	the	same-origin	restriction	by
												setting	the	document.domain	attribute,	using	rpId	as	the	given												setting	the	document.domain	attribute,	using	rpId	as	the	given
												value	but	without	changing	the	current	document's	domain.	If												value	but	without	changing	the	current	document's	domain.	If
												no	errors	are	thrown,	set	rpId	to	the	value	of	host	as												no	errors	are	thrown,	set	rpId	to	the	value	of	host	as
												computed	by	this	procedure.	Otherwise,	reject	promise	with	a												computed	by	this	procedure.	Otherwise,	reject	promise	with	a
												DOMException	whose	name	is	"SecurityError",	and	terminate	this												DOMException	whose	name	is	"SecurityError",	and	terminate	this
												algorithm.												algorithm.
				4.	If	the	extensions	member	of	options	is	present,	process	any				4.	If	the	extensions	member	of	options	is	present,	process	any
							extensions	supported	by	this	client	platform,	to	produce	the							extensions	supported	by	this	client	platform,	to	produce	the
							extension	data	that	needs	to	be	sent	to	the	authenticator.	If	an							extension	data	that	needs	to	be	sent	to	the	authenticator.	If	an
							error	is	encountered	while	processing	an	extension,	skip	that							error	is	encountered	while	processing	an	extension,	skip	that
							extension	and	do	not	produce	any	extension	data	for	it.	Call	the							extension	and	do	not	produce	any	extension	data	for	it.	Call	the
							result	of	this	processing	clientExtensions.							result	of	this	processing	clientExtensions.
				5.	Use	assertionChallenge,	callerOrigin	and	rpId,	along	with	the	token				5.	Use	assertionChallenge,	callerOrigin	and	rpId,	along	with	the	token
							binding	key	associated	with	callerOrigin	(if	any),	to	create	a							binding	key	associated	with	callerOrigin	(if	any),	to	create	a
							ClientData	structure	representing	this	request.	Choose	a	hash							ClientData	structure	representing	this	request.	Choose	a	hash
							algorithm	for	hashAlg	and	compute	the	clientDataJSON	and							algorithm	for	hashAlg	and	compute	the	clientDataJSON	and
							clientDataHash.							clientDataHash.
				6.	Initialize	issuedRequests	to	an	empty	list.				6.	Initialize	issuedRequests	to	an	empty	list.
				7.	For	each	authenticator	currently	available	on	this	platform,				7.	For	each	authenticator	currently	available	on	this	platform,
							perform	the	following	steps:							perform	the	following	steps:
										+	If	the	allowList	member	of	options	is	empty,	let										+	If	the	allowList	member	of	options	is	empty,	let
												credentialList	be	an	empty	list.	Otherwise,	execute	a												credentialList	be	an	empty	list.	Otherwise,	execute	a
												platform-specific	procedure	to	determine	which,	if	any,												platform-specific	procedure	to	determine	which,	if	any,
												credentials	listed	in	allowList	might	be	present	on	this												credentials	listed	in	allowList	might	be	present	on	this
												authenticator,	and	set	credentialList	to	this	filtered	list.												authenticator,	and	set	credentialList	to	this	filtered	list.
												If	no	such	filtering	is	possible,	set	credentialList	to	an												If	no	such	filtering	is	possible,	set	credentialList	to	an
												empty	list.												empty	list.
										+	For	each	credential	C	within	the	credentialList	that	has	a										+	For	each	credential	C	within	the	credentialList	that	has	a
												non-empty	transports	list,	optionally	use	only	the	specified												non-empty	transports	list,	optionally	use	only	the	specified
												transports	to	get	assertions	using	credential	C.												transports	to	get	assertions	using	credential	C.
										+	If	the	above	filtering	process	concludes	that	none	of	the										+	If	the	above	filtering	process	concludes	that	none	of	the
												credentials	on	the	allowList	can	possibly	be	on	this												credentials	on	the	allowList	can	possibly	be	on	this
												authenticator,	do	not	perform	any	of	the	following	steps	for												authenticator,	do	not	perform	any	of	the	following	steps	for
												this	authenticator,	and	proceed	to	the	next	authenticator	(if												this	authenticator,	and	proceed	to	the	next	authenticator	(if
												any).												any).
										+	Asynchronously	invoke	the	authenticatorGetAssertion	operation										+	Asynchronously	invoke	the	authenticatorGetAssertion	operation
												on	this	authenticator	with	rpId,	clientDataHash,												on	this	authenticator	with	rpId,	clientDataHash,

/Users/jehodges/Documents/work/standards/W3C/webauthn/index-vgb-u2f-attestation-dc90eab.txt,	Top	line:	744

							described	in	4.7	Additional	options	for	Assertion	Generation							described	in	4.7	Additional	options	for	Assertion	Generation
							(dictionary	AssertionOptions).							(dictionary	AssertionOptions).

			When	this	method	is	invoked,	the	user	agent	MUST	execute	the	following			When	this	method	is	invoked,	the	user	agent	MUST	execute	the	following
			algorithm:			algorithm:
				1.	If	the	timeoutSeconds	member	of	options	is	present,	check	if	its				1.	If	the	timeoutSeconds	member	of	options	is	present,	check	if	its
							value	lies	within	a	reasonable	range	as	defined	by	the	platform	and							value	lies	within	a	reasonable	range	as	defined	by	the	platform	and
							if	not,	correct	it	to	the	closest	value	lying	within	that	range.							if	not,	correct	it	to	the	closest	value	lying	within	that	range.
							Set	adjustedTimeout	to	this	adjusted	value.	If	timeoutSeconds	is							Set	adjustedTimeout	to	this	adjusted	value.	If	timeoutSeconds	is
							not	present,	then	set	adjustedTimeout	to	a	platform-specific							not	present,	then	set	adjustedTimeout	to	a	platform-specific
							default.							default.
				2.	Let	promise	be	a	new	Promise.	Return	promise	and	start	a	timer	for				2.	Let	promise	be	a	new	Promise.	Return	promise	and	start	a	timer	for
							adjustedTimeout	seconds.	Then	asynchronously	continue	executing	the							adjustedTimeout	seconds.	Then	asynchronously	continue	executing	the
							following	steps.	If	any	fatal	error	is	encountered	in	this	process							following	steps.	If	any	fatal	error	is	encountered	in	this	process
							other	than	the	ones	enumerated	below,	cancel	the	timer,	reject							other	than	the	ones	enumerated	below,	cancel	the	timer,	reject
							promise	with	a	DOMException	whose	name	is	"UnknownError",	and							promise	with	a	DOMException	whose	name	is	"UnknownError",	and
							terminate	this	algorithm.							terminate	this	algorithm.
				3.	Set	callerOrigin	to	the	current	settings	object's	origin.	If				3.	Set	callerOrigin	to	the	current	settings	object's	origin.	If
							callerOrigin	is	an	opaque	origin,	reject	promise	with	a							callerOrigin	is	an	opaque	origin,	reject	promise	with	a
							DOMException	whose	name	is	"NotAllowedError",	and	terminate	this							DOMException	whose	name	is	"NotAllowedError",	and	terminate	this
							algorithm.	Otherwise,							algorithm.	Otherwise,
										+	If	the	rpId	member	of	options	is	not	present,	then	set	rpId	to										+	If	the	rpId	member	of	options	is	not	present,	then	set	rpId	to
												callerOrigin.												callerOrigin.
										+	If	the	rpId	member	of	options	is	present,	then	invoke	the										+	If	the	rpId	member	of	options	is	present,	then	invoke	the
												procedure	used	for	relaxing	the	same-origin	restriction	by												procedure	used	for	relaxing	the	same-origin	restriction	by
												setting	the	document.domain	attribute,	using	rpId	as	the	given												setting	the	document.domain	attribute,	using	rpId	as	the	given
												value	but	without	changing	the	current	document's	domain.	If												value	but	without	changing	the	current	document's	domain.	If
												no	errors	are	thrown,	set	rpId	to	the	value	of	host	as												no	errors	are	thrown,	set	rpId	to	the	value	of	host	as
												computed	by	this	procedure.	Otherwise,	reject	promise	with	a												computed	by	this	procedure.	Otherwise,	reject	promise	with	a
												DOMException	whose	name	is	"SecurityError",	and	terminate	this												DOMException	whose	name	is	"SecurityError",	and	terminate	this
												algorithm.												algorithm.
				4.	If	the	extensions	member	of	options	is	present,	process	any				4.	If	the	extensions	member	of	options	is	present,	process	any
							extensions	supported	by	this	client	platform,	to	produce	the							extensions	supported	by	this	client	platform,	to	produce	the
							extension	data	that	needs	to	be	sent	to	the	authenticator.	If	an							extension	data	that	needs	to	be	sent	to	the	authenticator.	If	an
							error	is	encountered	while	processing	an	extension,	skip	that							error	is	encountered	while	processing	an	extension,	skip	that
							extension	and	do	not	produce	any	extension	data	for	it.	Call	the							extension	and	do	not	produce	any	extension	data	for	it.	Call	the
							result	of	this	processing	clientExtensions.							result	of	this	processing	clientExtensions.
				5.	Use	assertionChallenge,	callerOrigin	and	rpId,	along	with	the	token				5.	Use	assertionChallenge,	callerOrigin	and	rpId,	along	with	the	token
							binding	key	associated	with	callerOrigin	(if	any),	to	create	a							binding	key	associated	with	callerOrigin	(if	any),	to	create	a
							ClientData	structure	representing	this	request.	Choose	a	hash							ClientData	structure	representing	this	request.	Choose	a	hash
							algorithm	for	hashAlg	and	compute	the	clientDataJSON	and							algorithm	for	hashAlg	and	compute	the	clientDataJSON	and
							clientDataHash.							clientDataHash.
				6.	Initialize	issuedRequests	to	an	empty	list.				6.	Initialize	issuedRequests	to	an	empty	list.
				7.	For	each	authenticator	currently	available	on	this	platform,				7.	For	each	authenticator	currently	available	on	this	platform,
							perform	the	following	steps:							perform	the	following	steps:
										+	If	the	allowList	member	of	options	is	empty,	let										+	If	the	allowList	member	of	options	is	empty,	let
												credentialList	be	an	empty	list.	Otherwise,	execute	a												credentialList	be	an	empty	list.	Otherwise,	execute	a
												platform-specific	procedure	to	determine	which,	if	any,												platform-specific	procedure	to	determine	which,	if	any,
												credentials	listed	in	allowList	might	be	present	on	this												credentials	listed	in	allowList	might	be	present	on	this
												authenticator,	and	set	credentialList	to	this	filtered	list.												authenticator,	and	set	credentialList	to	this	filtered	list.
												If	no	such	filtering	is	possible,	set	credentialList	to	an												If	no	such	filtering	is	possible,	set	credentialList	to	an
												empty	list.												empty	list.
										+	For	each	credential	C	within	the	credentialList	that	has	a										+	For	each	credential	C	within	the	credentialList	that	has	a
												non-empty	transports	list,	optionally	use	only	the	specified												non-empty	transports	list,	optionally	use	only	the	specified
												transports	to	get	assertions	using	credential	C.												transports	to	get	assertions	using	credential	C.
										+	If	the	above	filtering	process	concludes	that	none	of	the										+	If	the	above	filtering	process	concludes	that	none	of	the
												credentials	on	the	allowList	can	possibly	be	on	this												credentials	on	the	allowList	can	possibly	be	on	this
												authenticator,	do	not	perform	any	of	the	following	steps	for												authenticator,	do	not	perform	any	of	the	following	steps	for
												this	authenticator,	and	proceed	to	the	next	authenticator	(if												this	authenticator,	and	proceed	to	the	next	authenticator	(if
												any).												any).
										+	Asynchronously	invoke	the	authenticatorGetAssertion	operation										+	Asynchronously	invoke	the	authenticatorGetAssertion	operation
												on	this	authenticator	with	rpId,	clientDataHash,												on	this	authenticator	with	rpId,	clientDataHash,

13/72



/Users/jehodges/Documents/work/standards/W3C/webauthn/index-vgb-u2f-attestation-0d0fcea.txt,	Top	line:	806

												credentialList,	and	clientExtensions	as	parameters.												credentialList,	and	clientExtensions	as	parameters.
										+	Add	an	entry	to	issuedRequests,	corresponding	to	this	request.										+	Add	an	entry	to	issuedRequests,	corresponding	to	this	request.
				8.	While	issuedRequests	is	not	empty,	perform	the	following	actions				8.	While	issuedRequests	is	not	empty,	perform	the	following	actions
							depending	upon	the	adjustedTimeout	timer	and	responses	from	the							depending	upon	the	adjustedTimeout	timer	and	responses	from	the
							authenticators:							authenticators:
										+	If	the	timer	for	adjustedTimeout	expires,	then	for	each	entry										+	If	the	timer	for	adjustedTimeout	expires,	then	for	each	entry
												in	issuedRequests	invoke	the	authenticatorCancel	operation	on												in	issuedRequests	invoke	the	authenticatorCancel	operation	on
												that	authenticator	and	remove	its	entry	from	the	list.												that	authenticator	and	remove	its	entry	from	the	list.
										+	If	any	authenticator	returns	a	status	indicating	that	the	user										+	If	any	authenticator	returns	a	status	indicating	that	the	user
												cancelled	the	operation,	delete	that	authenticator's	entry												cancelled	the	operation,	delete	that	authenticator's	entry
												from	issuedRequests.	For	each	remaining	entry	in												from	issuedRequests.	For	each	remaining	entry	in
												issuedRequests	invoke	the	authenticatorCancel	operation	on												issuedRequests	invoke	the	authenticatorCancel	operation	on
												that	authenticator,	and	remove	its	entry	from	the	list.												that	authenticator,	and	remove	its	entry	from	the	list.
										+	If	any	authenticator	returns	an	error	status,	delete	the										+	If	any	authenticator	returns	an	error	status,	delete	the
												corresponding	entry	from	issuedRequests.												corresponding	entry	from	issuedRequests.
										+	If	any	authenticator	returns	success:										+	If	any	authenticator	returns	success:
															o	Remove	this	authenticator's	entry	from	issuedRequests.															o	Remove	this	authenticator's	entry	from	issuedRequests.
															o	Create	a	new	AuthenticationAssertion	object	named	value															o	Create	a	new	AuthenticationAssertion	object	named	value
																	and	populate	its	fields	with	the	values	returned	from	the																	and	populate	its	fields	with	the	values	returned	from	the
																	authenticator	as	well	as	the	clientDataJSON	computed																	authenticator	as	well	as	the	clientDataJSON	computed
																	earlier.																	earlier.
															o	For	each	remaining	entry	in	issuedRequests	invoke	the															o	For	each	remaining	entry	in	issuedRequests	invoke	the
																	authenticatorCancel	operation	on	that	authenticator	and																	authenticatorCancel	operation	on	that	authenticator	and
																	remove	its	entry	from	the	list.																	remove	its	entry	from	the	list.
															o	Resolve	promise	with	value	and	terminate	this	algorithm.															o	Resolve	promise	with	value	and	terminate	this	algorithm.
				9.	Reject	promise	with	a	DOMException	whose	name	is	"NotAllowedError",				9.	Reject	promise	with	a	DOMException	whose	name	is	"NotAllowedError",
							and	terminate	this	algorithm.							and	terminate	this	algorithm.

			During	the	above	process,	the	user	agent	SHOULD	show	some	UI	to	the			During	the	above	process,	the	user	agent	SHOULD	show	some	UI	to	the
			user	to	guide	them	in	the	process	of	selecting	and	authorizing	an			user	to	guide	them	in	the	process	of	selecting	and	authorizing	an
			authenticator	with	which	to	complete	the	operation.			authenticator	with	which	to	complete	the	operation.

		4.2.	Information	about	Scoped	Credential	(interface	ScopedCredentialInfo)		4.2.	Information	about	Scoped	Credential	(interface	ScopedCredentialInfo)

[SecureContext][SecureContext]
interface	ScopedCredentialInfo	{interface	ScopedCredentialInfo	{
				readonly				attribute	ArrayBuffer			clientData;				readonly				attribute	ArrayBuffer			clientData;
				readonly				attribute	ArrayBuffer			attestationObject;				readonly				attribute	ArrayBuffer			attestationObject;
};};

			This	interface	represents	a	newly-created	scoped	credential.	It			This	interface	represents	a	newly-created	scoped	credential.	It
			contains	information	about	the	credential	that	can	be	used	to	locate	it			contains	information	about	the	credential	that	can	be	used	to	locate	it
			later	for	use,	and	also	contains	metadata	that	can	be	used	by	the			later	for	use,	and	also	contains	metadata	that	can	be	used	by	the
			Relying	Party	to	assess	the	strength	of	the	credential	during			Relying	Party	to	assess	the	strength	of	the	credential	during
			registration.			registration.

			The	clientData	member	contains	the	clientDataJSON	(see	5.2	Signature			The	clientData	member	contains	the	clientDataJSON	(see	5.2	Signature
			Format)	passed	to	the	authenticator	by	the	client	in	order	to	generate			Format)	passed	to	the	authenticator	by	the	client	in	order	to	generate
			this	credential.	The	exact	JSON	encoding	must	be	preserved	as	a			this	credential.	The	exact	JSON	encoding	must	be	preserved	as	a
			cryptographic	hash	(clientDataHash)	has	been	computed	over	it.			cryptographic	hash	(clientDataHash)	has	been	computed	over	it.

			The	attestationObject	element	contains	the	attestation	object.	The			The	attestationObject	element	contains	the	attestation	object.	The
			contents	of	this	object	are	determined	by	the	attestation	statement			contents	of	this	object	are	determined	by	the	attestation	statement
			format	used	by	the	authenticator.	This	object	is	opaque	to,	and			format	used	by	the	authenticator.	This	object	is	opaque	to,	and
			cryptographically	protected	against	tampering	by,	the	client.	It			cryptographically	protected	against	tampering	by,	the	client.	It
			contains	the	unique	identifier	of	the	credential,	the	credential	public			contains	the	unique	identifier	of	the	credential,	the	credential	public
			key,	and	an	attestation	statement.	It	also	contains	any	additional			key,	and	an	attestation	statement.	It	also	contains	any	additional
			information	that	the	Relying	Party's	server	requires	to	validate	the			information	that	the	Relying	Party's	server	requires	to	validate	the
			attestation	statement,	as	well	as	to	decode	and	validate	the	bindings			attestation	statement,	as	well	as	to	decode	and	validate	the	bindings
			of	both	the	client	and	authenticator	data.	For	more	details,	see	5.3			of	both	the	client	and	authenticator	data.	For	more	details,	see	5.3
			Credential	Attestation.			Credential	Attestation.

/Users/jehodges/Documents/work/standards/W3C/webauthn/index-vgb-u2f-attestation-dc90eab.txt,	Top	line:	806

												credentialList,	and	clientExtensions	as	parameters.												credentialList,	and	clientExtensions	as	parameters.
										+	Add	an	entry	to	issuedRequests,	corresponding	to	this	request.										+	Add	an	entry	to	issuedRequests,	corresponding	to	this	request.
				8.	While	issuedRequests	is	not	empty,	perform	the	following	actions				8.	While	issuedRequests	is	not	empty,	perform	the	following	actions
							depending	upon	the	adjustedTimeout	timer	and	responses	from	the							depending	upon	the	adjustedTimeout	timer	and	responses	from	the
							authenticators:							authenticators:
										+	If	the	timer	for	adjustedTimeout	expires,	then	for	each	entry										+	If	the	timer	for	adjustedTimeout	expires,	then	for	each	entry
												in	issuedRequests	invoke	the	authenticatorCancel	operation	on												in	issuedRequests	invoke	the	authenticatorCancel	operation	on
												that	authenticator	and	remove	its	entry	from	the	list.												that	authenticator	and	remove	its	entry	from	the	list.
										+	If	any	authenticator	returns	a	status	indicating	that	the	user										+	If	any	authenticator	returns	a	status	indicating	that	the	user
												cancelled	the	operation,	delete	that	authenticator's	entry												cancelled	the	operation,	delete	that	authenticator's	entry
												from	issuedRequests.	For	each	remaining	entry	in												from	issuedRequests.	For	each	remaining	entry	in
												issuedRequests	invoke	the	authenticatorCancel	operation	on												issuedRequests	invoke	the	authenticatorCancel	operation	on
												that	authenticator,	and	remove	its	entry	from	the	list.												that	authenticator,	and	remove	its	entry	from	the	list.
										+	If	any	authenticator	returns	an	error	status,	delete	the										+	If	any	authenticator	returns	an	error	status,	delete	the
												corresponding	entry	from	issuedRequests.												corresponding	entry	from	issuedRequests.
										+	If	any	authenticator	returns	success:										+	If	any	authenticator	returns	success:
															o	Remove	this	authenticator's	entry	from	issuedRequests.															o	Remove	this	authenticator's	entry	from	issuedRequests.
															o	Create	a	new	AuthenticationAssertion	object	named	value															o	Create	a	new	AuthenticationAssertion	object	named	value
																	and	populate	its	fields	with	the	values	returned	from	the																	and	populate	its	fields	with	the	values	returned	from	the
																	authenticator	as	well	as	the	clientDataJSON	computed																	authenticator	as	well	as	the	clientDataJSON	computed
																	earlier.																	earlier.
															o	For	each	remaining	entry	in	issuedRequests	invoke	the															o	For	each	remaining	entry	in	issuedRequests	invoke	the
																	authenticatorCancel	operation	on	that	authenticator	and																	authenticatorCancel	operation	on	that	authenticator	and
																	remove	its	entry	from	the	list.																	remove	its	entry	from	the	list.
															o	Resolve	promise	with	value	and	terminate	this	algorithm.															o	Resolve	promise	with	value	and	terminate	this	algorithm.
				9.	Reject	promise	with	a	DOMException	whose	name	is	"NotAllowedError",				9.	Reject	promise	with	a	DOMException	whose	name	is	"NotAllowedError",
							and	terminate	this	algorithm.							and	terminate	this	algorithm.

			During	the	above	process,	the	user	agent	SHOULD	show	some	UI	to	the			During	the	above	process,	the	user	agent	SHOULD	show	some	UI	to	the
			user	to	guide	them	in	the	process	of	selecting	and	authorizing	an			user	to	guide	them	in	the	process	of	selecting	and	authorizing	an
			authenticator	with	which	to	complete	the	operation.			authenticator	with	which	to	complete	the	operation.

		4.2.	Information	about	Scoped	Credential	(interface	ScopedCredentialInfo)		4.2.	Information	about	Scoped	Credential	(interface	ScopedCredentialInfo)

[SecureContext][SecureContext]
interface	ScopedCredentialInfo	{interface	ScopedCredentialInfo	{
				readonly				attribute	ArrayBuffer			clientData;				readonly				attribute	ArrayBuffer			clientData;
				readonly				attribute	ArrayBuffer			attestationObject;				readonly				attribute	ArrayBuffer			attestationObject;
};};

			This	interface	represents	a	newly-created	scoped	credential.	It			This	interface	represents	a	newly-created	scoped	credential.	It
			contains	information	about	the	credential	that	can	be	used	to	locate	it			contains	information	about	the	credential	that	can	be	used	to	locate	it
			later	for	use,	and	also	contains	metadata	that	can	be	used	by	the			later	for	use,	and	also	contains	metadata	that	can	be	used	by	the
			Relying	Party	to	assess	the	strength	of	the	credential	during			Relying	Party	to	assess	the	strength	of	the	credential	during
			registration.			registration.

			The	clientData	member	contains	the	clientDataJSON	(see	5.2	Signature			The	clientData	member	contains	the	clientDataJSON	(see	5.2	Signature
			Format)	passed	to	the	authenticator	by	the	client	in	order	to	generate			Format)	passed	to	the	authenticator	by	the	client	in	order	to	generate
			this	credential.	The	exact	JSON	encoding	must	be	preserved	as	a			this	credential.	The	exact	JSON	encoding	must	be	preserved	as	a
			cryptographic	hash	(clientDataHash)	has	been	computed	over	it.			cryptographic	hash	(clientDataHash)	has	been	computed	over	it.

			The	attestationObject	element	contains	the	attestation	object.	The			The	attestationObject	element	contains	the	attestation	object.	The
			contents	of	this	object	are	determined	by	the	attestation	statement			contents	of	this	object	are	determined	by	the	attestation	statement
			format	used	by	the	authenticator.	This	object	is	opaque	to,	and			format	used	by	the	authenticator.	This	object	is	opaque	to,	and
			cryptographically	protected	against	tampering	by,	the	client.	It			cryptographically	protected	against	tampering	by,	the	client.	It
			contains	the	unique	identifier	of	the	credential,	the	credential	public			contains	the	unique	identifier	of	the	credential,	the	credential	public
			key,	and	an	attestation	statement.	It	also	contains	any	additional			key,	and	an	attestation	statement.	It	also	contains	any	additional
			information	that	the	Relying	Party's	server	requires	to	validate	the			information	that	the	Relying	Party's	server	requires	to	validate	the
			attestation	statement,	as	well	as	to	decode	and	validate	the	bindings			attestation	statement,	as	well	as	to	decode	and	validate	the	bindings
			of	both	the	client	and	authenticator	data.	For	more	details,	see	5.3			of	both	the	client	and	authenticator	data.	For	more	details,	see	5.3
			Credential	Attestation.			Credential	Attestation.

14/72



/Users/jehodges/Documents/work/standards/W3C/webauthn/index-vgb-u2f-attestation-0d0fcea.txt,	Top	line:	868

		4.3.	User	Account	Information	(dictionary	Account)		4.3.	User	Account	Information	(dictionary	Account)

dictionary	Account	{dictionary	Account	{
				required	DOMString	rpDisplayName;				required	DOMString	rpDisplayName;
				required	DOMString	displayName;				required	DOMString	displayName;
				required	DOMString	id;				required	DOMString	id;
				DOMString										name;				DOMString										name;
				DOMString										imageURL;				DOMString										imageURL;
};};

			This	dictionary	is	used	by	the	caller	to	specify	information	about	the			This	dictionary	is	used	by	the	caller	to	specify	information	about	the
			user	account	and	Relying	Party	with	which	a	credential	is	to	be			user	account	and	Relying	Party	with	which	a	credential	is	to	be
			associated.	It	is	intended	to	help	the	authenticator	in	providing	a			associated.	It	is	intended	to	help	the	authenticator	in	providing	a
			friendly	credential	selection	interface	for	the	user.			friendly	credential	selection	interface	for	the	user.

			The	rpDisplayName	member	contains	the	friendly	name	of	the	Relying			The	rpDisplayName	member	contains	the	friendly	name	of	the	Relying
			Party,	such	as	"Acme	Corporation",	"Widgets	Inc"	or	"Awesome	Site".			Party,	such	as	"Acme	Corporation",	"Widgets	Inc"	or	"Awesome	Site".

			The	displayName	member	contains	the	friendly	name	associated	with	the			The	displayName	member	contains	the	friendly	name	associated	with	the
			user	account	by	the	Relying	Party,	such	as	"John	P.	Smith".			user	account	by	the	Relying	Party,	such	as	"John	P.	Smith".

			The	id	member	contains	an	identifier	for	the	account,	specified	by	the			The	id	member	contains	an	identifier	for	the	account,	specified	by	the
			Relying	Party.	This	is	not	meant	to	be	displayed	to	the	user.	It	is			Relying	Party.	This	is	not	meant	to	be	displayed	to	the	user.	It	is
			used	by	the	Relying	Party	to	control	the	number	of	credentials	-	an			used	by	the	Relying	Party	to	control	the	number	of	credentials	-	an
			authenticator	will	never	contain	more	than	one	credential	for	a	given			authenticator	will	never	contain	more	than	one	credential	for	a	given
			Relying	Party	under	the	same	id.			Relying	Party	under	the	same	id.

			The	name	member	contains	a	detailed	name	for	the	account,	such	as			The	name	member	contains	a	detailed	name	for	the	account,	such	as
			"john.p.smith@example.com".			"john.p.smith@example.com".

			The	imageURL	member	contains	a	URL	that	resolves	to	the	user's	account			The	imageURL	member	contains	a	URL	that	resolves	to	the	user's	account
			image.	This	may	be	a	URL	that	can	be	used	to	retrieve	an	image			image.	This	may	be	a	URL	that	can	be	used	to	retrieve	an	image
			containing	the	user's	current	avatar,	or	a	data	URI	that	contains	the			containing	the	user's	current	avatar,	or	a	data	URI	that	contains	the
			image	data.			image	data.

		4.4.	Parameters	for	Credential	Generation	(dictionary		4.4.	Parameters	for	Credential	Generation	(dictionary
		ScopedCredentialParameters)		ScopedCredentialParameters)

dictionary	ScopedCredentialParameters	{dictionary	ScopedCredentialParameters	{
				required	ScopedCredentialType		type;				required	ScopedCredentialType		type;
				required	AlgorithmIdentifier			algorithm;				required	AlgorithmIdentifier			algorithm;
};};

			This	dictionary	is	used	to	supply	additional	parameters	when	creating	a			This	dictionary	is	used	to	supply	additional	parameters	when	creating	a
			new	credential.			new	credential.

			The	type	member	specifies	the	type	of	credential	to	be	created.			The	type	member	specifies	the	type	of	credential	to	be	created.

			The	algorithm	member	specifies	the	cryptographic	signature	algorithm			The	algorithm	member	specifies	the	cryptographic	signature	algorithm
			with	which	the	newly	generated	credential	will	be	used,	and	thus	also			with	which	the	newly	generated	credential	will	be	used,	and	thus	also
			the	type	of	asymmetric	key	pair	to	be	generated,	e.g.,	RSA	or	Elliptic			the	type	of	asymmetric	key	pair	to	be	generated,	e.g.,	RSA	or	Elliptic
			Curve.			Curve.

		4.5.	Additional	options	for	Credential	Generation	(dictionary		4.5.	Additional	options	for	Credential	Generation	(dictionary
		ScopedCredentialOptions)		ScopedCredentialOptions)

dictionary	ScopedCredentialOptions	{dictionary	ScopedCredentialOptions	{
				unsigned	long																											timeoutSeconds;				unsigned	long																											timeoutSeconds;
				USVString																															rpId;				USVString																															rpId;
				sequence	<	ScopedCredentialDescriptor	>	excludeList	=	[];				sequence	<	ScopedCredentialDescriptor	>	excludeList	=	[];
				Attachment																														attachment;				Attachment																														attachment;
				AuthenticationExtensions																extensions;				AuthenticationExtensions																extensions;

/Users/jehodges/Documents/work/standards/W3C/webauthn/index-vgb-u2f-attestation-dc90eab.txt,	Top	line:	868

		4.3.	User	Account	Information	(dictionary	Account)		4.3.	User	Account	Information	(dictionary	Account)

dictionary	Account	{dictionary	Account	{
				required	DOMString	rpDisplayName;				required	DOMString	rpDisplayName;
				required	DOMString	displayName;				required	DOMString	displayName;
				required	DOMString	id;				required	DOMString	id;
				DOMString										name;				DOMString										name;
				DOMString										imageURL;				DOMString										imageURL;
};};

			This	dictionary	is	used	by	the	caller	to	specify	information	about	the			This	dictionary	is	used	by	the	caller	to	specify	information	about	the
			user	account	and	Relying	Party	with	which	a	credential	is	to	be			user	account	and	Relying	Party	with	which	a	credential	is	to	be
			associated.	It	is	intended	to	help	the	authenticator	in	providing	a			associated.	It	is	intended	to	help	the	authenticator	in	providing	a
			friendly	credential	selection	interface	for	the	user.			friendly	credential	selection	interface	for	the	user.

			The	rpDisplayName	member	contains	the	friendly	name	of	the	Relying			The	rpDisplayName	member	contains	the	friendly	name	of	the	Relying
			Party,	such	as	"Acme	Corporation",	"Widgets	Inc"	or	"Awesome	Site".			Party,	such	as	"Acme	Corporation",	"Widgets	Inc"	or	"Awesome	Site".

			The	displayName	member	contains	the	friendly	name	associated	with	the			The	displayName	member	contains	the	friendly	name	associated	with	the
			user	account	by	the	Relying	Party,	such	as	"John	P.	Smith".			user	account	by	the	Relying	Party,	such	as	"John	P.	Smith".

			The	id	member	contains	an	identifier	for	the	account,	specified	by	the			The	id	member	contains	an	identifier	for	the	account,	specified	by	the
			Relying	Party.	This	is	not	meant	to	be	displayed	to	the	user.	It	is			Relying	Party.	This	is	not	meant	to	be	displayed	to	the	user.	It	is
			used	by	the	Relying	Party	to	control	the	number	of	credentials	-	an			used	by	the	Relying	Party	to	control	the	number	of	credentials	-	an
			authenticator	will	never	contain	more	than	one	credential	for	a	given			authenticator	will	never	contain	more	than	one	credential	for	a	given
			Relying	Party	under	the	same	id.			Relying	Party	under	the	same	id.

			The	name	member	contains	a	detailed	name	for	the	account,	such	as			The	name	member	contains	a	detailed	name	for	the	account,	such	as
			"john.p.smith@example.com".			"john.p.smith@example.com".

			The	imageURL	member	contains	a	URL	that	resolves	to	the	user's	account			The	imageURL	member	contains	a	URL	that	resolves	to	the	user's	account
			image.	This	may	be	a	URL	that	can	be	used	to	retrieve	an	image			image.	This	may	be	a	URL	that	can	be	used	to	retrieve	an	image
			containing	the	user's	current	avatar,	or	a	data	URI	that	contains	the			containing	the	user's	current	avatar,	or	a	data	URI	that	contains	the
			image	data.			image	data.

		4.4.	Parameters	for	Credential	Generation	(dictionary		4.4.	Parameters	for	Credential	Generation	(dictionary
		ScopedCredentialParameters)		ScopedCredentialParameters)

dictionary	ScopedCredentialParameters	{dictionary	ScopedCredentialParameters	{
				required	ScopedCredentialType		type;				required	ScopedCredentialType		type;
				required	AlgorithmIdentifier			algorithm;				required	AlgorithmIdentifier			algorithm;
};};

			This	dictionary	is	used	to	supply	additional	parameters	when	creating	a			This	dictionary	is	used	to	supply	additional	parameters	when	creating	a
			new	credential.			new	credential.

			The	type	member	specifies	the	type	of	credential	to	be	created.			The	type	member	specifies	the	type	of	credential	to	be	created.

			The	algorithm	member	specifies	the	cryptographic	signature	algorithm			The	algorithm	member	specifies	the	cryptographic	signature	algorithm
			with	which	the	newly	generated	credential	will	be	used,	and	thus	also			with	which	the	newly	generated	credential	will	be	used,	and	thus	also
			the	type	of	asymmetric	key	pair	to	be	generated,	e.g.,	RSA	or	Elliptic			the	type	of	asymmetric	key	pair	to	be	generated,	e.g.,	RSA	or	Elliptic
			Curve.			Curve.

		4.5.	Additional	options	for	Credential	Generation	(dictionary		4.5.	Additional	options	for	Credential	Generation	(dictionary
		ScopedCredentialOptions)		ScopedCredentialOptions)

dictionary	ScopedCredentialOptions	{dictionary	ScopedCredentialOptions	{
				unsigned	long																											timeoutSeconds;				unsigned	long																											timeoutSeconds;
				USVString																															rpId;				USVString																															rpId;
				sequence	<	ScopedCredentialDescriptor	>	excludeList	=	[];				sequence	<	ScopedCredentialDescriptor	>	excludeList	=	[];
				Attachment																														attachment;				Attachment																														attachment;
				AuthenticationExtensions																extensions;				AuthenticationExtensions																extensions;

15/72



/Users/jehodges/Documents/work/standards/W3C/webauthn/index-vgb-u2f-attestation-0d0fcea.txt,	Top	line:	930

};};

			This	dictionary	is	used	to	supply	additional	options	when	creating	a			This	dictionary	is	used	to	supply	additional	options	when	creating	a
			new	credential.	All	these	parameters	are	optional.			new	credential.	All	these	parameters	are	optional.
					*	The	timeoutSeconds	parameter	specifies	a	time,	in	seconds,	that	the					*	The	timeoutSeconds	parameter	specifies	a	time,	in	seconds,	that	the
							caller	is	willing	to	wait	for	the	call	to	complete.	This	is	treated							caller	is	willing	to	wait	for	the	call	to	complete.	This	is	treated
							as	a	hint,	and	may	be	overridden	by	the	platform.							as	a	hint,	and	may	be	overridden	by	the	platform.
					*	The	rpId	parameter	explicitly	specifies	the	RP	ID	that	the					*	The	rpId	parameter	explicitly	specifies	the	RP	ID	that	the
							credential	should	be	associated	with.	If	it	is	omitted,	the	RP	ID							credential	should	be	associated	with.	If	it	is	omitted,	the	RP	ID
							will	be	set	to	the	current	settings	object's	origin.							will	be	set	to	the	current	settings	object's	origin.
					*	The	excludeList	parameter	is	intended	for	use	by	Relying	Parties					*	The	excludeList	parameter	is	intended	for	use	by	Relying	Parties
							that	wish	to	limit	the	creation	of	multiple	credentials	for	the							that	wish	to	limit	the	creation	of	multiple	credentials	for	the
							same	account	on	a	single	authenticator.	The	platform	is	requested							same	account	on	a	single	authenticator.	The	platform	is	requested
							to	return	an	error	if	the	new	credential	would	be	created	on	an							to	return	an	error	if	the	new	credential	would	be	created	on	an
							authenticator	that	also	contains	one	of	the	credentials	enumerated							authenticator	that	also	contains	one	of	the	credentials	enumerated
							in	this	parameter.							in	this	parameter.
					*	The	extensions	parameter	contains	additional	parameters	requesting					*	The	extensions	parameter	contains	additional	parameters	requesting
							additional	processing	by	the	client	and	authenticator.	For	example,							additional	processing	by	the	client	and	authenticator.	For	example,
							the	caller	may	request	that	only	authenticators	with	certain							the	caller	may	request	that	only	authenticators	with	certain
							capabilities	be	used	to	create	the	credential,	or	that	additional							capabilities	be	used	to	create	the	credential,	or	that	additional
							information	be	returned	in	the	attestation	object.	Alternatively,							information	be	returned	in	the	attestation	object.	Alternatively,
							the	caller	may	specify	an	additional	message	that	they	would	like							the	caller	may	specify	an	additional	message	that	they	would	like
							the	authenticator	to	display	to	the	user.	Extensions	are	defined	in							the	authenticator	to	display	to	the	user.	Extensions	are	defined	in
							8	WebAuthn	Extensions.							8	WebAuthn	Extensions.
					*	The	attachment	parameter	contains	authenticator	attachment					*	The	attachment	parameter	contains	authenticator	attachment
							descriptions,	which	are	used	as	an	additional	constraint	on	which							descriptions,	which	are	used	as	an	additional	constraint	on	which
							authenticators	are	eligible	to	participate	in	a	4.1.1	Create	a	new							authenticators	are	eligible	to	participate	in	a	4.1.1	Create	a	new
							credential	(makeCredential()	method)	or	4.1.2	Use	an	existing							credential	(makeCredential()	method)	or	4.1.2	Use	an	existing
							credential	(getAssertion()	method)	operation.	See	4.5.1	Credential							credential	(getAssertion()	method)	operation.	See	4.5.1	Credential
							Attachment	enumeration	(enum	Attachment)	for	a	description	of	the							Attachment	enumeration	(enum	Attachment)	for	a	description	of	the
							attachment	values	and	their	meanings.							attachment	values	and	their	meanings.

				4.5.1.	Credential	Attachment	enumeration	(enum	Attachment)				4.5.1.	Credential	Attachment	enumeration	(enum	Attachment)

enum	Attachment	{enum	Attachment	{
				"platform",				"platform",
				"cross-platform"				"cross-platform"
};};

			Clients	may	communicate	with	authenticators	using	a	variety	of			Clients	may	communicate	with	authenticators	using	a	variety	of
			mechanisms.	For	example,	a	client	may	use	a	platform-specific	API	to			mechanisms.	For	example,	a	client	may	use	a	platform-specific	API	to
			communicate	with	an	authenticator	which	is	physically	bound	to	a			communicate	with	an	authenticator	which	is	physically	bound	to	a
			platform.	On	the	other	hand,	a	client	may	use	a	variety	of	standardized			platform.	On	the	other	hand,	a	client	may	use	a	variety	of	standardized
			cross-platform	transport	protocols	such	as	Bluetooth	(see	4.9.5			cross-platform	transport	protocols	such	as	Bluetooth	(see	4.9.5
			Credential	Transport	enumeration	(enum	ExternalTransport))	to	discover			Credential	Transport	enumeration	(enum	ExternalTransport))	to	discover
			and	communicate	with	cross-platform	attached	authenticators.	We	define			and	communicate	with	cross-platform	attached	authenticators.	We	define
			authenticators	that	are	part	of	the	client's	platform	as	having	a			authenticators	that	are	part	of	the	client's	platform	as	having	a
			platform	attachment,	and	refer	to	them	as	platform	authenticators.			platform	attachment,	and	refer	to	them	as	platform	authenticators.
			While	those	that	are	reachable	via	cross-platform	transport	protocols			While	those	that	are	reachable	via	cross-platform	transport	protocols
			are	defined	as	having	cross-platform	attachment,	and	refer	to	them	as			are	defined	as	having	cross-platform	attachment,	and	refer	to	them	as
			roaming	authenticators.			roaming	authenticators.
					*	platform	attachment	-	the	respective	authenticator	is	attached					*	platform	attachment	-	the	respective	authenticator	is	attached
							using	platform-specific	transports.	Usually,	authenticators	of	this							using	platform-specific	transports.	Usually,	authenticators	of	this
							class	are	non-removable	from	the	platform.							class	are	non-removable	from	the	platform.
					*	cross-platform	attachment	-	the	respective	authenticator	is					*	cross-platform	attachment	-	the	respective	authenticator	is
							attached	using	cross-platform	transports.	Authenticators	of	this							attached	using	cross-platform	transports.	Authenticators	of	this
							class	are	removable	from,	and	can	"roam"	among,	client	platforms.							class	are	removable	from,	and	can	"roam"	among,	client	platforms.

			This	distinction	is	important	because	there	are	use-cases	where	only			This	distinction	is	important	because	there	are	use-cases	where	only
			platform	authenticators	are	acceptable	to	a	Relying	Party,	and			platform	authenticators	are	acceptable	to	a	Relying	Party,	and
			conversely	ones	where	only	roaming	authenticators	are	employed.	As	a			conversely	ones	where	only	roaming	authenticators	are	employed.	As	a
			concrete	example	of	the	former,	a	credential	on	a	platform			concrete	example	of	the	former,	a	credential	on	a	platform

/Users/jehodges/Documents/work/standards/W3C/webauthn/index-vgb-u2f-attestation-dc90eab.txt,	Top	line:	930

};};

			This	dictionary	is	used	to	supply	additional	options	when	creating	a			This	dictionary	is	used	to	supply	additional	options	when	creating	a
			new	credential.	All	these	parameters	are	optional.			new	credential.	All	these	parameters	are	optional.
					*	The	timeoutSeconds	parameter	specifies	a	time,	in	seconds,	that	the					*	The	timeoutSeconds	parameter	specifies	a	time,	in	seconds,	that	the
							caller	is	willing	to	wait	for	the	call	to	complete.	This	is	treated							caller	is	willing	to	wait	for	the	call	to	complete.	This	is	treated
							as	a	hint,	and	may	be	overridden	by	the	platform.							as	a	hint,	and	may	be	overridden	by	the	platform.
					*	The	rpId	parameter	explicitly	specifies	the	RP	ID	that	the					*	The	rpId	parameter	explicitly	specifies	the	RP	ID	that	the
							credential	should	be	associated	with.	If	it	is	omitted,	the	RP	ID							credential	should	be	associated	with.	If	it	is	omitted,	the	RP	ID
							will	be	set	to	the	current	settings	object's	origin.							will	be	set	to	the	current	settings	object's	origin.
					*	The	excludeList	parameter	is	intended	for	use	by	Relying	Parties					*	The	excludeList	parameter	is	intended	for	use	by	Relying	Parties
							that	wish	to	limit	the	creation	of	multiple	credentials	for	the							that	wish	to	limit	the	creation	of	multiple	credentials	for	the
							same	account	on	a	single	authenticator.	The	platform	is	requested							same	account	on	a	single	authenticator.	The	platform	is	requested
							to	return	an	error	if	the	new	credential	would	be	created	on	an							to	return	an	error	if	the	new	credential	would	be	created	on	an
							authenticator	that	also	contains	one	of	the	credentials	enumerated							authenticator	that	also	contains	one	of	the	credentials	enumerated
							in	this	parameter.							in	this	parameter.
					*	The	extensions	parameter	contains	additional	parameters	requesting					*	The	extensions	parameter	contains	additional	parameters	requesting
							additional	processing	by	the	client	and	authenticator.	For	example,							additional	processing	by	the	client	and	authenticator.	For	example,
							the	caller	may	request	that	only	authenticators	with	certain							the	caller	may	request	that	only	authenticators	with	certain
							capabilities	be	used	to	create	the	credential,	or	that	additional							capabilities	be	used	to	create	the	credential,	or	that	additional
							information	be	returned	in	the	attestation	object.	Alternatively,							information	be	returned	in	the	attestation	object.	Alternatively,
							the	caller	may	specify	an	additional	message	that	they	would	like							the	caller	may	specify	an	additional	message	that	they	would	like
							the	authenticator	to	display	to	the	user.	Extensions	are	defined	in							the	authenticator	to	display	to	the	user.	Extensions	are	defined	in
							8	WebAuthn	Extensions.							8	WebAuthn	Extensions.
					*	The	attachment	parameter	contains	authenticator	attachment					*	The	attachment	parameter	contains	authenticator	attachment
							descriptions,	which	are	used	as	an	additional	constraint	on	which							descriptions,	which	are	used	as	an	additional	constraint	on	which
							authenticators	are	eligible	to	participate	in	a	4.1.1	Create	a	new							authenticators	are	eligible	to	participate	in	a	4.1.1	Create	a	new
							credential	(makeCredential()	method)	or	4.1.2	Use	an	existing							credential	(makeCredential()	method)	or	4.1.2	Use	an	existing
							credential	(getAssertion()	method)	operation.	See	4.5.1	Credential							credential	(getAssertion()	method)	operation.	See	4.5.1	Credential
							Attachment	enumeration	(enum	Attachment)	for	a	description	of	the							Attachment	enumeration	(enum	Attachment)	for	a	description	of	the
							attachment	values	and	their	meanings.							attachment	values	and	their	meanings.

				4.5.1.	Credential	Attachment	enumeration	(enum	Attachment)				4.5.1.	Credential	Attachment	enumeration	(enum	Attachment)

enum	Attachment	{enum	Attachment	{
				"platform",				"platform",
				"cross-platform"				"cross-platform"
};};

			Clients	may	communicate	with	authenticators	using	a	variety	of			Clients	may	communicate	with	authenticators	using	a	variety	of
			mechanisms.	For	example,	a	client	may	use	a	platform-specific	API	to			mechanisms.	For	example,	a	client	may	use	a	platform-specific	API	to
			communicate	with	an	authenticator	which	is	physically	bound	to	a			communicate	with	an	authenticator	which	is	physically	bound	to	a
			platform.	On	the	other	hand,	a	client	may	use	a	variety	of	standardized			platform.	On	the	other	hand,	a	client	may	use	a	variety	of	standardized
			cross-platform	transport	protocols	such	as	Bluetooth	(see	4.9.5			cross-platform	transport	protocols	such	as	Bluetooth	(see	4.9.5
			Credential	Transport	enumeration	(enum	ExternalTransport))	to	discover			Credential	Transport	enumeration	(enum	ExternalTransport))	to	discover
			and	communicate	with	cross-platform	attached	authenticators.	We	define			and	communicate	with	cross-platform	attached	authenticators.	We	define
			authenticators	that	are	part	of	the	client's	platform	as	having	a			authenticators	that	are	part	of	the	client's	platform	as	having	a
			platform	attachment,	and	refer	to	them	as	platform	authenticators.			platform	attachment,	and	refer	to	them	as	platform	authenticators.
			While	those	that	are	reachable	via	cross-platform	transport	protocols			While	those	that	are	reachable	via	cross-platform	transport	protocols
			are	defined	as	having	cross-platform	attachment,	and	refer	to	them	as			are	defined	as	having	cross-platform	attachment,	and	refer	to	them	as
			roaming	authenticators.			roaming	authenticators.
					*	platform	attachment	-	the	respective	authenticator	is	attached					*	platform	attachment	-	the	respective	authenticator	is	attached
							using	platform-specific	transports.	Usually,	authenticators	of	this							using	platform-specific	transports.	Usually,	authenticators	of	this
							class	are	non-removable	from	the	platform.							class	are	non-removable	from	the	platform.
					*	cross-platform	attachment	-	the	respective	authenticator	is					*	cross-platform	attachment	-	the	respective	authenticator	is
							attached	using	cross-platform	transports.	Authenticators	of	this							attached	using	cross-platform	transports.	Authenticators	of	this
							class	are	removable	from,	and	can	"roam"	among,	client	platforms.							class	are	removable	from,	and	can	"roam"	among,	client	platforms.

			This	distinction	is	important	because	there	are	use-cases	where	only			This	distinction	is	important	because	there	are	use-cases	where	only
			platform	authenticators	are	acceptable	to	a	Relying	Party,	and			platform	authenticators	are	acceptable	to	a	Relying	Party,	and
			conversely	ones	where	only	roaming	authenticators	are	employed.	As	a			conversely	ones	where	only	roaming	authenticators	are	employed.	As	a
			concrete	example	of	the	former,	a	credential	on	a	platform			concrete	example	of	the	former,	a	credential	on	a	platform

16/72



/Users/jehodges/Documents/work/standards/W3C/webauthn/index-vgb-u2f-attestation-0d0fcea.txt,	Top	line:	992

			authenticator	may	be	used	by	Relying	Parties	to	quickly	and			authenticator	may	be	used	by	Relying	Parties	to	quickly	and
			conveniently	reauthenticate	the	user	with	a	minimum	of	friction,	e.g.,			conveniently	reauthenticate	the	user	with	a	minimum	of	friction,	e.g.,
			the	user	will	not	have	to	dig	around	in	their	pocket	for	their	key	fob			the	user	will	not	have	to	dig	around	in	their	pocket	for	their	key	fob
			or	phone.	As	a	concrete	example	of	the	latter,	when	the	user	is			or	phone.	As	a	concrete	example	of	the	latter,	when	the	user	is
			accessing	the	Relying	Party	from	a	given	client	for	the	first	time,			accessing	the	Relying	Party	from	a	given	client	for	the	first	time,
			they	may	be	required	to	use	a	roaming	authenticator	which	was			they	may	be	required	to	use	a	roaming	authenticator	which	was
			originally	registered	with	the	Relying	Party	using	a	different	client.			originally	registered	with	the	Relying	Party	using	a	different	client.

		4.6.	Web	Authentication	Assertion	(interface	AuthenticationAssertion)		4.6.	Web	Authentication	Assertion	(interface	AuthenticationAssertion)

[SecureContext][SecureContext]
interface	AuthenticationAssertion	{interface	AuthenticationAssertion	{
				readonly	attribute	ScopedCredential		credential;				readonly	attribute	ScopedCredential		credential;
				readonly	attribute	ArrayBuffer							clientData;				readonly	attribute	ArrayBuffer							clientData;
				readonly	attribute	ArrayBuffer							authenticatorData;				readonly	attribute	ArrayBuffer							authenticatorData;
				readonly	attribute	ArrayBuffer							signature;				readonly	attribute	ArrayBuffer							signature;
};};

			Scoped	credentials	produce	a	cryptographic	signature	that	provides			Scoped	credentials	produce	a	cryptographic	signature	that	provides
			proof	of	possession	of	a	private	key	as	well	as	evidence	of	user			proof	of	possession	of	a	private	key	as	well	as	evidence	of	user
			consent	to	a	specific	transaction.	The	structure	of	these	signatures	is			consent	to	a	specific	transaction.	The	structure	of	these	signatures	is
			defined	as	follows.			defined	as	follows.

			The	credential	member	represents	the	credential	that	was	used	to			The	credential	member	represents	the	credential	that	was	used	to
			generate	this	assertion.			generate	this	assertion.

			The	clientData	member	contains	the	parameters	sent	to	the	authenticator			The	clientData	member	contains	the	parameters	sent	to	the	authenticator
			by	the	client,	in	serialized	form.	See	4.9.1	Client	data	used	in			by	the	client,	in	serialized	form.	See	4.9.1	Client	data	used	in
			WebAuthn	signatures	(dictionary	ClientData)	for	the	format	of	this			WebAuthn	signatures	(dictionary	ClientData)	for	the	format	of	this
			parameter	and	how	it	is	generated.			parameter	and	how	it	is	generated.

			The	authenticatorData	member	contains	the	serialized	data	returned	by			The	authenticatorData	member	contains	the	serialized	data	returned	by
			the	authenticator.	See	5.2.1	Authenticator	data.			the	authenticator.	See	5.2.1	Authenticator	data.

			The	signature	member	contains	the	raw	signature	returned	from	the			The	signature	member	contains	the	raw	signature	returned	from	the
			authenticator.	See	5.2.3	Generating	a	signature.			authenticator.	See	5.2.3	Generating	a	signature.

		4.7.	Additional	options	for	Assertion	Generation	(dictionary	AssertionOptions)		4.7.	Additional	options	for	Assertion	Generation	(dictionary	AssertionOptions)

dictionary	AssertionOptions	{dictionary	AssertionOptions	{
				unsigned	long																											timeoutSeconds;				unsigned	long																											timeoutSeconds;
				USVString																															rpId;				USVString																															rpId;
				sequence	<	ScopedCredentialDescriptor	>	allowList	=	[];				sequence	<	ScopedCredentialDescriptor	>	allowList	=	[];
				AuthenticationExtensions																extensions;				AuthenticationExtensions																extensions;
};};

			This	dictionary	is	used	to	supply	additional	options	when	generating	an			This	dictionary	is	used	to	supply	additional	options	when	generating	an
			assertion.	All	these	parameters	are	optional.			assertion.	All	these	parameters	are	optional.
					*	The	optional	timeoutSeconds	parameter	specifies	a	time,	in	seconds,					*	The	optional	timeoutSeconds	parameter	specifies	a	time,	in	seconds,
							that	the	caller	is	willing	to	wait	for	the	call	to	complete.	This							that	the	caller	is	willing	to	wait	for	the	call	to	complete.	This
							is	treated	as	a	hint,	and	may	be	overridden	by	the	platform.							is	treated	as	a	hint,	and	may	be	overridden	by	the	platform.
					*	The	optional	rpId	parameter	specifies	the	rpId	claimed	by	the					*	The	optional	rpId	parameter	specifies	the	rpId	claimed	by	the
							caller.	If	it	is	omitted,	it	will	be	assumed	to	be	equal	to	the							caller.	If	it	is	omitted,	it	will	be	assumed	to	be	equal	to	the
							current	settings	object's	origin.							current	settings	object's	origin.
					*	The	optional	allowList	member	contains	a	list	of	credentials					*	The	optional	allowList	member	contains	a	list	of	credentials
							acceptable	to	the	caller,	in	order	of	the	caller's	preference.							acceptable	to	the	caller,	in	order	of	the	caller's	preference.
					*	The	optional	extensions	parameter	contains	additional	parameters					*	The	optional	extensions	parameter	contains	additional	parameters
							requesting	additional	processing	by	the	client	and	authenticator.							requesting	additional	processing	by	the	client	and	authenticator.
							For	example,	if	transaction	confirmation	is	sought	from	the	user,							For	example,	if	transaction	confirmation	is	sought	from	the	user,
							then	the	prompt	string	would	be	included	in	an	extension.							then	the	prompt	string	would	be	included	in	an	extension.
							Extensions	are	defined	in	a	companion	specification.							Extensions	are	defined	in	a	companion	specification.

/Users/jehodges/Documents/work/standards/W3C/webauthn/index-vgb-u2f-attestation-dc90eab.txt,	Top	line:	992

			authenticator	may	be	used	by	Relying	Parties	to	quickly	and			authenticator	may	be	used	by	Relying	Parties	to	quickly	and
			conveniently	reauthenticate	the	user	with	a	minimum	of	friction,	e.g.,			conveniently	reauthenticate	the	user	with	a	minimum	of	friction,	e.g.,
			the	user	will	not	have	to	dig	around	in	their	pocket	for	their	key	fob			the	user	will	not	have	to	dig	around	in	their	pocket	for	their	key	fob
			or	phone.	As	a	concrete	example	of	the	latter,	when	the	user	is			or	phone.	As	a	concrete	example	of	the	latter,	when	the	user	is
			accessing	the	Relying	Party	from	a	given	client	for	the	first	time,			accessing	the	Relying	Party	from	a	given	client	for	the	first	time,
			they	may	be	required	to	use	a	roaming	authenticator	which	was			they	may	be	required	to	use	a	roaming	authenticator	which	was
			originally	registered	with	the	Relying	Party	using	a	different	client.			originally	registered	with	the	Relying	Party	using	a	different	client.

		4.6.	Web	Authentication	Assertion	(interface	AuthenticationAssertion)		4.6.	Web	Authentication	Assertion	(interface	AuthenticationAssertion)

[SecureContext][SecureContext]
interface	AuthenticationAssertion	{interface	AuthenticationAssertion	{
				readonly	attribute	ScopedCredential		credential;				readonly	attribute	ScopedCredential		credential;
				readonly	attribute	ArrayBuffer							clientData;				readonly	attribute	ArrayBuffer							clientData;
				readonly	attribute	ArrayBuffer							authenticatorData;				readonly	attribute	ArrayBuffer							authenticatorData;
				readonly	attribute	ArrayBuffer							signature;				readonly	attribute	ArrayBuffer							signature;
};};

			Scoped	credentials	produce	a	cryptographic	signature	that	provides			Scoped	credentials	produce	a	cryptographic	signature	that	provides
			proof	of	possession	of	a	private	key	as	well	as	evidence	of	user			proof	of	possession	of	a	private	key	as	well	as	evidence	of	user
			consent	to	a	specific	transaction.	The	structure	of	these	signatures	is			consent	to	a	specific	transaction.	The	structure	of	these	signatures	is
			defined	as	follows.			defined	as	follows.

			The	credential	member	represents	the	credential	that	was	used	to			The	credential	member	represents	the	credential	that	was	used	to
			generate	this	assertion.			generate	this	assertion.

			The	clientData	member	contains	the	parameters	sent	to	the	authenticator			The	clientData	member	contains	the	parameters	sent	to	the	authenticator
			by	the	client,	in	serialized	form.	See	4.9.1	Client	data	used	in			by	the	client,	in	serialized	form.	See	4.9.1	Client	data	used	in
			WebAuthn	signatures	(dictionary	ClientData)	for	the	format	of	this			WebAuthn	signatures	(dictionary	ClientData)	for	the	format	of	this
			parameter	and	how	it	is	generated.			parameter	and	how	it	is	generated.

			The	authenticatorData	member	contains	the	serialized	data	returned	by			The	authenticatorData	member	contains	the	serialized	data	returned	by
			the	authenticator.	See	5.2.1	Authenticator	data.			the	authenticator.	See	5.2.1	Authenticator	data.

			The	signature	member	contains	the	raw	signature	returned	from	the			The	signature	member	contains	the	raw	signature	returned	from	the
			authenticator.	See	5.2.3	Generating	a	signature.			authenticator.	See	5.2.3	Generating	a	signature.

		4.7.	Additional	options	for	Assertion	Generation	(dictionary	AssertionOptions)		4.7.	Additional	options	for	Assertion	Generation	(dictionary	AssertionOptions)

dictionary	AssertionOptions	{dictionary	AssertionOptions	{
				unsigned	long																											timeoutSeconds;				unsigned	long																											timeoutSeconds;
				USVString																															rpId;				USVString																															rpId;
				sequence	<	ScopedCredentialDescriptor	>	allowList	=	[];				sequence	<	ScopedCredentialDescriptor	>	allowList	=	[];
				AuthenticationExtensions																extensions;				AuthenticationExtensions																extensions;
};};

			This	dictionary	is	used	to	supply	additional	options	when	generating	an			This	dictionary	is	used	to	supply	additional	options	when	generating	an
			assertion.	All	these	parameters	are	optional.			assertion.	All	these	parameters	are	optional.
					*	The	optional	timeoutSeconds	parameter	specifies	a	time,	in	seconds,					*	The	optional	timeoutSeconds	parameter	specifies	a	time,	in	seconds,
							that	the	caller	is	willing	to	wait	for	the	call	to	complete.	This							that	the	caller	is	willing	to	wait	for	the	call	to	complete.	This
							is	treated	as	a	hint,	and	may	be	overridden	by	the	platform.							is	treated	as	a	hint,	and	may	be	overridden	by	the	platform.
					*	The	optional	rpId	parameter	specifies	the	rpId	claimed	by	the					*	The	optional	rpId	parameter	specifies	the	rpId	claimed	by	the
							caller.	If	it	is	omitted,	it	will	be	assumed	to	be	equal	to	the							caller.	If	it	is	omitted,	it	will	be	assumed	to	be	equal	to	the
							current	settings	object's	origin.							current	settings	object's	origin.
					*	The	optional	allowList	member	contains	a	list	of	credentials					*	The	optional	allowList	member	contains	a	list	of	credentials
							acceptable	to	the	caller,	in	order	of	the	caller's	preference.							acceptable	to	the	caller,	in	order	of	the	caller's	preference.
					*	The	optional	extensions	parameter	contains	additional	parameters					*	The	optional	extensions	parameter	contains	additional	parameters
							requesting	additional	processing	by	the	client	and	authenticator.							requesting	additional	processing	by	the	client	and	authenticator.
							For	example,	if	transaction	confirmation	is	sought	from	the	user,							For	example,	if	transaction	confirmation	is	sought	from	the	user,
							then	the	prompt	string	would	be	included	in	an	extension.							then	the	prompt	string	would	be	included	in	an	extension.
							Extensions	are	defined	in	a	companion	specification.							Extensions	are	defined	in	a	companion	specification.

17/72



/Users/jehodges/Documents/work/standards/W3C/webauthn/index-vgb-u2f-attestation-0d0fcea.txt,	Top	line:	1054

		4.8.	Authentication	Assertion	Extensions	(dictionary	AuthenticationExtensions)		4.8.	Authentication	Assertion	Extensions	(dictionary	AuthenticationExtensions)

dictionary	AuthenticationExtensions	{dictionary	AuthenticationExtensions	{
};};

			This	is	a	dictionary	containing	zero	or	more	extensions	as	defined	in			This	is	a	dictionary	containing	zero	or	more	extensions	as	defined	in
			8	WebAuthn	Extensions.	An	extension	is	an	additional	parameter	that			8	WebAuthn	Extensions.	An	extension	is	an	additional	parameter	that
			can	be	passed	to	the	getAssertion()	method	and	triggers	some	additional			can	be	passed	to	the	getAssertion()	method	and	triggers	some	additional
			processing	by	the	client	platform	and/or	the	authenticator.			processing	by	the	client	platform	and/or	the	authenticator.

			If	the	caller	wishes	to	pass	extensions	to	the	platform,	it	MUST	do	so			If	the	caller	wishes	to	pass	extensions	to	the	platform,	it	MUST	do	so
			by	adding	one	entry	per	extension	to	this	dictionary	with	the	extension			by	adding	one	entry	per	extension	to	this	dictionary	with	the	extension
			identifier	as	the	key,	and	the	extension's	value	as	the	value	(see	8			identifier	as	the	key,	and	the	extension's	value	as	the	value	(see	8
			WebAuthn	Extensions	for	details).			WebAuthn	Extensions	for	details).

		4.9.	Supporting	Data	Structures		4.9.	Supporting	Data	Structures

			The	scoped	credential	type	uses	certain	data	structures	that	are			The	scoped	credential	type	uses	certain	data	structures	that	are
			specified	in	supporting	specifications.	These	are	as	follows.			specified	in	supporting	specifications.	These	are	as	follows.

				4.9.1.	Client	data	used	in	WebAuthn	signatures	(dictionary	ClientData)				4.9.1.	Client	data	used	in	WebAuthn	signatures	(dictionary	ClientData)

			The	client	data	represents	the	contextual	bindings	of	both	the	Relying			The	client	data	represents	the	contextual	bindings	of	both	the	Relying
			Party	and	the	client	platform.	It	is	a	key-value	mapping	with			Party	and	the	client	platform.	It	is	a	key-value	mapping	with
			string-valued	keys.	Values	may	be	any	type	that	has	a	valid	encoding	in			string-valued	keys.	Values	may	be	any	type	that	has	a	valid	encoding	in
			JSON.	Its	structure	is	defined	by	the	following	Web	IDL.			JSON.	Its	structure	is	defined	by	the	following	Web	IDL.
dictionary	ClientData	{dictionary	ClientData	{
				required	DOMString											challenge;				required	DOMString											challenge;
				required	DOMString											origin;				required	DOMString											origin;
				required	AlgorithmIdentifier	hashAlg;				required	AlgorithmIdentifier	hashAlg;
				DOMString																				tokenBinding;				DOMString																				tokenBinding;
				AuthenticationExtensions					extensions;				AuthenticationExtensions					extensions;
};};

			The	challenge	member	contains	the	base64url	encoding	of	the	challenge			The	challenge	member	contains	the	base64url	encoding	of	the	challenge
			provided	by	the	RP.			provided	by	the	RP.

			The	origin	member	contains	the	fully	qualified	origin	of	the	requester,			The	origin	member	contains	the	fully	qualified	origin	of	the	requester,
			as	provided	to	the	authenticator	by	the	client,	in	the	syntax	defined			as	provided	to	the	authenticator	by	the	client,	in	the	syntax	defined
			by	[RFC6454].			by	[RFC6454].

			The	hashAlg	member	specifies	the	hash	algorithm	used	to	compute			The	hashAlg	member	specifies	the	hash	algorithm	used	to	compute
			clientDataHash.	Use	"S256"	for	SHA-256,	"S384"	for	SHA384,	"S512"	for			clientDataHash.	Use	"S256"	for	SHA-256,	"S384"	for	SHA384,	"S512"	for
			SHA512,	and	"SM3"	for	SM3	(see	10	IANA	Considerations).	This	algorithm			SHA512,	and	"SM3"	for	SM3	(see	10	IANA	Considerations).	This	algorithm
			is	chosen	by	the	client	at	its	sole	discretion.			is	chosen	by	the	client	at	its	sole	discretion.

			The	tokenBinding	member	contains	the	base64url	encoding	of	the	Token			The	tokenBinding	member	contains	the	base64url	encoding	of	the	Token
			Binding	ID	that	this	client	uses	for	the	Token	Binding	protocol	when			Binding	ID	that	this	client	uses	for	the	Token	Binding	protocol	when
			communicating	with	the	Relying	Party.	This	can	be	omitted	if	no	Token			communicating	with	the	Relying	Party.	This	can	be	omitted	if	no	Token
			Binding	has	been	negotiated	between	the	client	and	the	Relying	Party.			Binding	has	been	negotiated	between	the	client	and	the	Relying	Party.

			The	optional	extensions	member	contains	additional	parameters	generated			The	optional	extensions	member	contains	additional	parameters	generated
			by	processing	the	extensions	passed	in	by	the	Relying	Party.	WebAuthn			by	processing	the	extensions	passed	in	by	the	Relying	Party.	WebAuthn
			extensions	are	detailed	in	Section	8	WebAuthn	Extensions.			extensions	are	detailed	in	Section	8	WebAuthn	Extensions.

			This	structure	is	used	by	the	client	to	compute	the	following			This	structure	is	used	by	the	client	to	compute	the	following
			quantities:			quantities:

			clientDataJSON			clientDataJSON

										This	is	the	UTF-8	encoded	JSON	serialization	[RFC7159]	of	a										This	is	the	UTF-8	encoded	JSON	serialization	[RFC7159]	of	a
										ClientData	dictionary.	Any	valid	JSON	serialization	may	be	used										ClientData	dictionary.	Any	valid	JSON	serialization	may	be	used

/Users/jehodges/Documents/work/standards/W3C/webauthn/index-vgb-u2f-attestation-dc90eab.txt,	Top	line:	1054

		4.8.	Authentication	Assertion	Extensions	(dictionary	AuthenticationExtensions)		4.8.	Authentication	Assertion	Extensions	(dictionary	AuthenticationExtensions)

dictionary	AuthenticationExtensions	{dictionary	AuthenticationExtensions	{
};};

			This	is	a	dictionary	containing	zero	or	more	extensions	as	defined	in			This	is	a	dictionary	containing	zero	or	more	extensions	as	defined	in
			8	WebAuthn	Extensions.	An	extension	is	an	additional	parameter	that			8	WebAuthn	Extensions.	An	extension	is	an	additional	parameter	that
			can	be	passed	to	the	getAssertion()	method	and	triggers	some	additional			can	be	passed	to	the	getAssertion()	method	and	triggers	some	additional
			processing	by	the	client	platform	and/or	the	authenticator.			processing	by	the	client	platform	and/or	the	authenticator.

			If	the	caller	wishes	to	pass	extensions	to	the	platform,	it	MUST	do	so			If	the	caller	wishes	to	pass	extensions	to	the	platform,	it	MUST	do	so
			by	adding	one	entry	per	extension	to	this	dictionary	with	the	extension			by	adding	one	entry	per	extension	to	this	dictionary	with	the	extension
			identifier	as	the	key,	and	the	extension's	value	as	the	value	(see	8			identifier	as	the	key,	and	the	extension's	value	as	the	value	(see	8
			WebAuthn	Extensions	for	details).			WebAuthn	Extensions	for	details).

		4.9.	Supporting	Data	Structures		4.9.	Supporting	Data	Structures

			The	scoped	credential	type	uses	certain	data	structures	that	are			The	scoped	credential	type	uses	certain	data	structures	that	are
			specified	in	supporting	specifications.	These	are	as	follows.			specified	in	supporting	specifications.	These	are	as	follows.

				4.9.1.	Client	data	used	in	WebAuthn	signatures	(dictionary	ClientData)				4.9.1.	Client	data	used	in	WebAuthn	signatures	(dictionary	ClientData)

			The	client	data	represents	the	contextual	bindings	of	both	the	Relying			The	client	data	represents	the	contextual	bindings	of	both	the	Relying
			Party	and	the	client	platform.	It	is	a	key-value	mapping	with			Party	and	the	client	platform.	It	is	a	key-value	mapping	with
			string-valued	keys.	Values	may	be	any	type	that	has	a	valid	encoding	in			string-valued	keys.	Values	may	be	any	type	that	has	a	valid	encoding	in
			JSON.	Its	structure	is	defined	by	the	following	Web	IDL.			JSON.	Its	structure	is	defined	by	the	following	Web	IDL.
dictionary	ClientData	{dictionary	ClientData	{
				required	DOMString											challenge;				required	DOMString											challenge;
				required	DOMString											origin;				required	DOMString											origin;
				required	AlgorithmIdentifier	hashAlg;				required	AlgorithmIdentifier	hashAlg;
				DOMString																				tokenBinding;				DOMString																				tokenBinding;
				AuthenticationExtensions					extensions;				AuthenticationExtensions					extensions;
};};

			The	challenge	member	contains	the	base64url	encoding	of	the	challenge			The	challenge	member	contains	the	base64url	encoding	of	the	challenge
			provided	by	the	RP.			provided	by	the	RP.

			The	origin	member	contains	the	fully	qualified	origin	of	the	requester,			The	origin	member	contains	the	fully	qualified	origin	of	the	requester,
			as	provided	to	the	authenticator	by	the	client,	in	the	syntax	defined			as	provided	to	the	authenticator	by	the	client,	in	the	syntax	defined
			by	[RFC6454].			by	[RFC6454].

			The	hashAlg	member	specifies	the	hash	algorithm	used	to	compute			The	hashAlg	member	specifies	the	hash	algorithm	used	to	compute
			clientDataHash.	Use	"S256"	for	SHA-256,	"S384"	for	SHA384,	"S512"	for			clientDataHash.	Use	"S256"	for	SHA-256,	"S384"	for	SHA384,	"S512"	for
			SHA512,	and	"SM3"	for	SM3	(see	10	IANA	Considerations).	This	algorithm			SHA512,	and	"SM3"	for	SM3	(see	10	IANA	Considerations).	This	algorithm
			is	chosen	by	the	client	at	its	sole	discretion.			is	chosen	by	the	client	at	its	sole	discretion.

			The	tokenBinding	member	contains	the	base64url	encoding	of	the	Token			The	tokenBinding	member	contains	the	base64url	encoding	of	the	Token
			Binding	ID	that	this	client	uses	for	the	Token	Binding	protocol	when			Binding	ID	that	this	client	uses	for	the	Token	Binding	protocol	when
			communicating	with	the	Relying	Party.	This	can	be	omitted	if	no	Token			communicating	with	the	Relying	Party.	This	can	be	omitted	if	no	Token
			Binding	has	been	negotiated	between	the	client	and	the	Relying	Party.			Binding	has	been	negotiated	between	the	client	and	the	Relying	Party.

			The	optional	extensions	member	contains	additional	parameters	generated			The	optional	extensions	member	contains	additional	parameters	generated
			by	processing	the	extensions	passed	in	by	the	Relying	Party.	WebAuthn			by	processing	the	extensions	passed	in	by	the	Relying	Party.	WebAuthn
			extensions	are	detailed	in	Section	8	WebAuthn	Extensions.			extensions	are	detailed	in	Section	8	WebAuthn	Extensions.

			This	structure	is	used	by	the	client	to	compute	the	following			This	structure	is	used	by	the	client	to	compute	the	following
			quantities:			quantities:

			clientDataJSON			clientDataJSON

										This	is	the	UTF-8	encoded	JSON	serialization	[RFC7159]	of	a										This	is	the	UTF-8	encoded	JSON	serialization	[RFC7159]	of	a
										ClientData	dictionary.	Any	valid	JSON	serialization	may	be	used										ClientData	dictionary.	Any	valid	JSON	serialization	may	be	used

18/72



/Users/jehodges/Documents/work/standards/W3C/webauthn/index-vgb-u2f-attestation-0d0fcea.txt,	Top	line:	1116

										by	the	client.	This	specification	imposes	no	canonicalization										by	the	client.	This	specification	imposes	no	canonicalization
										requirements.										requirements.

			clientDataHash			clientDataHash

										This	is	the	hash	(computed	using	hashAlg)	of	clientDataJSON,	as										This	is	the	hash	(computed	using	hashAlg)	of	clientDataJSON,	as
										constructed	by	the	client.										constructed	by	the	client.

				4.9.2.	Credential	Type	enumeration	(enum	ScopedCredentialType)				4.9.2.	Credential	Type	enumeration	(enum	ScopedCredentialType)

enum	ScopedCredentialType	{enum	ScopedCredentialType	{
				"ScopedCred"				"ScopedCred"
};};

			This	enumeration	defines	the	valid	credential	types.	It	is	an	extension			This	enumeration	defines	the	valid	credential	types.	It	is	an	extension
			point;	values	may	be	added	to	it	in	the	future,	as	more	credential			point;	values	may	be	added	to	it	in	the	future,	as	more	credential
			types	are	defined.	The	values	of	this	enumeration	are	used	for			types	are	defined.	The	values	of	this	enumeration	are	used	for
			versioning	the	Authentication	Assertion	and	attestation	structures			versioning	the	Authentication	Assertion	and	attestation	structures
			according	to	the	type	of	the	authenticator.			according	to	the	type	of	the	authenticator.

			Currently	one	credential	type	is	defined,	namely	"ScopedCred".			Currently	one	credential	type	is	defined,	namely	"ScopedCred".

				4.9.3.	Unique	Identifier	for	Credential	(interface	ScopedCredential)				4.9.3.	Unique	Identifier	for	Credential	(interface	ScopedCredential)

[SecureContext][SecureContext]
interface	ScopedCredential	{interface	ScopedCredential	{
				readonly	attribute	ScopedCredentialType	type;				readonly	attribute	ScopedCredentialType	type;
				readonly	attribute	ArrayBuffer										id;				readonly	attribute	ArrayBuffer										id;
};};

			This	interface	contains	the	attributes	that	are	returned	to	the	caller			This	interface	contains	the	attributes	that	are	returned	to	the	caller
			when	a	new	credential	is	created,	and	can	be	used	later	by	the	caller			when	a	new	credential	is	created,	and	can	be	used	later	by	the	caller
			to	select	a	credential	for	use.			to	select	a	credential	for	use.

			The	type	attribute	contains	a	value	of	type	ScopedCredentialType,			The	type	attribute	contains	a	value	of	type	ScopedCredentialType,
			indicating	the	specification	and	version	that	this	credential	conforms			indicating	the	specification	and	version	that	this	credential	conforms
			to.			to.

			The	id	attribute	contains	an	identifier	for	the	credential,	chosen	by			The	id	attribute	contains	an	identifier	for	the	credential,	chosen	by
			the	platform	with	help	from	the	authenticator.	This	identifier	is	used			the	platform	with	help	from	the	authenticator.	This	identifier	is	used
			to	look	up	credentials	for	use,	and	is	therefore	expected	to	be			to	look	up	credentials	for	use,	and	is	therefore	expected	to	be
			globally	unique	with	high	probability	across	all	credentials	of	the			globally	unique	with	high	probability	across	all	credentials	of	the
			same	type,	across	all	authenticators.	This	API	does	not	constrain	the			same	type,	across	all	authenticators.	This	API	does	not	constrain	the
			format	or	length	of	this	identifier,	except	that	it	must	be	sufficient			format	or	length	of	this	identifier,	except	that	it	must	be	sufficient
			for	the	platform	to	uniquely	select	a	key.	For	example,	an			for	the	platform	to	uniquely	select	a	key.	For	example,	an
			authenticator	without	on-board	storage	may	create	identifiers	that			authenticator	without	on-board	storage	may	create	identifiers	that
			consist	of	the	key	material	wrapped	with	a	key	that	is	burned	into	the			consist	of	the	key	material	wrapped	with	a	key	that	is	burned	into	the
			authenticator.			authenticator.

				4.9.4.	Credential	Descriptor	(dictionary	ScopedCredentialDescriptor)				4.9.4.	Credential	Descriptor	(dictionary	ScopedCredentialDescriptor)

dictionary	ScopedCredentialDescriptor	{dictionary	ScopedCredentialDescriptor	{
				required	ScopedCredentialType	type;				required	ScopedCredentialType	type;
				required	BufferSource			id;				required	BufferSource			id;
				sequence	<	Transport	>		transports;				sequence	<	Transport	>		transports;
};};

			This	dictionary	contains	the	attributes	that	are	specified	by	a	caller			This	dictionary	contains	the	attributes	that	are	specified	by	a	caller
			when	referring	to	a	credential	as	an	input	parameter	to	the			when	referring	to	a	credential	as	an	input	parameter	to	the
			makeCredential()	or	getAssertion()	method.	It	mirrors	the	fields	of	the			makeCredential()	or	getAssertion()	method.	It	mirrors	the	fields	of	the
			ScopedCredential	object	returned	by	these	methods.			ScopedCredential	object	returned	by	these	methods.

/Users/jehodges/Documents/work/standards/W3C/webauthn/index-vgb-u2f-attestation-dc90eab.txt,	Top	line:	1116

										by	the	client.	This	specification	imposes	no	canonicalization										by	the	client.	This	specification	imposes	no	canonicalization
										requirements.										requirements.

			clientDataHash			clientDataHash

										This	is	the	hash	(computed	using	hashAlg)	of	clientDataJSON,	as										This	is	the	hash	(computed	using	hashAlg)	of	clientDataJSON,	as
										constructed	by	the	client.										constructed	by	the	client.

				4.9.2.	Credential	Type	enumeration	(enum	ScopedCredentialType)				4.9.2.	Credential	Type	enumeration	(enum	ScopedCredentialType)

enum	ScopedCredentialType	{enum	ScopedCredentialType	{
				"ScopedCred"				"ScopedCred"
};};

			This	enumeration	defines	the	valid	credential	types.	It	is	an	extension			This	enumeration	defines	the	valid	credential	types.	It	is	an	extension
			point;	values	may	be	added	to	it	in	the	future,	as	more	credential			point;	values	may	be	added	to	it	in	the	future,	as	more	credential
			types	are	defined.	The	values	of	this	enumeration	are	used	for			types	are	defined.	The	values	of	this	enumeration	are	used	for
			versioning	the	Authentication	Assertion	and	attestation	structures			versioning	the	Authentication	Assertion	and	attestation	structures
			according	to	the	type	of	the	authenticator.			according	to	the	type	of	the	authenticator.

			Currently	one	credential	type	is	defined,	namely	"ScopedCred".			Currently	one	credential	type	is	defined,	namely	"ScopedCred".

				4.9.3.	Unique	Identifier	for	Credential	(interface	ScopedCredential)				4.9.3.	Unique	Identifier	for	Credential	(interface	ScopedCredential)

[SecureContext][SecureContext]
interface	ScopedCredential	{interface	ScopedCredential	{
				readonly	attribute	ScopedCredentialType	type;				readonly	attribute	ScopedCredentialType	type;
				readonly	attribute	ArrayBuffer										id;				readonly	attribute	ArrayBuffer										id;
};};

			This	interface	contains	the	attributes	that	are	returned	to	the	caller			This	interface	contains	the	attributes	that	are	returned	to	the	caller
			when	a	new	credential	is	created,	and	can	be	used	later	by	the	caller			when	a	new	credential	is	created,	and	can	be	used	later	by	the	caller
			to	select	a	credential	for	use.			to	select	a	credential	for	use.

			The	type	attribute	contains	a	value	of	type	ScopedCredentialType,			The	type	attribute	contains	a	value	of	type	ScopedCredentialType,
			indicating	the	specification	and	version	that	this	credential	conforms			indicating	the	specification	and	version	that	this	credential	conforms
			to.			to.

			The	id	attribute	contains	an	identifier	for	the	credential,	chosen	by			The	id	attribute	contains	an	identifier	for	the	credential,	chosen	by
			the	platform	with	help	from	the	authenticator.	This	identifier	is	used			the	platform	with	help	from	the	authenticator.	This	identifier	is	used
			to	look	up	credentials	for	use,	and	is	therefore	expected	to	be			to	look	up	credentials	for	use,	and	is	therefore	expected	to	be
			globally	unique	with	high	probability	across	all	credentials	of	the			globally	unique	with	high	probability	across	all	credentials	of	the
			same	type,	across	all	authenticators.	This	API	does	not	constrain	the			same	type,	across	all	authenticators.	This	API	does	not	constrain	the
			format	or	length	of	this	identifier,	except	that	it	must	be	sufficient			format	or	length	of	this	identifier,	except	that	it	must	be	sufficient
			for	the	platform	to	uniquely	select	a	key.	For	example,	an			for	the	platform	to	uniquely	select	a	key.	For	example,	an
			authenticator	without	on-board	storage	may	create	identifiers	that			authenticator	without	on-board	storage	may	create	identifiers	that
			consist	of	the	key	material	wrapped	with	a	key	that	is	burned	into	the			consist	of	the	key	material	wrapped	with	a	key	that	is	burned	into	the
			authenticator.			authenticator.

				4.9.4.	Credential	Descriptor	(dictionary	ScopedCredentialDescriptor)				4.9.4.	Credential	Descriptor	(dictionary	ScopedCredentialDescriptor)

dictionary	ScopedCredentialDescriptor	{dictionary	ScopedCredentialDescriptor	{
				required	ScopedCredentialType	type;				required	ScopedCredentialType	type;
				required	BufferSource			id;				required	BufferSource			id;
				sequence	<	Transport	>		transports;				sequence	<	Transport	>		transports;
};};

			This	dictionary	contains	the	attributes	that	are	specified	by	a	caller			This	dictionary	contains	the	attributes	that	are	specified	by	a	caller
			when	referring	to	a	credential	as	an	input	parameter	to	the			when	referring	to	a	credential	as	an	input	parameter	to	the
			makeCredential()	or	getAssertion()	method.	It	mirrors	the	fields	of	the			makeCredential()	or	getAssertion()	method.	It	mirrors	the	fields	of	the
			ScopedCredential	object	returned	by	these	methods.			ScopedCredential	object	returned	by	these	methods.

19/72



/Users/jehodges/Documents/work/standards/W3C/webauthn/index-vgb-u2f-attestation-0d0fcea.txt,	Top	line:	1178

			The	type	attribute	contains	the	type	of	the	credential	the	caller	is			The	type	attribute	contains	the	type	of	the	credential	the	caller	is
			referring	to.			referring	to.

			The	id	attribute	contains	the	identifier	of	the	credential	that	the			The	id	attribute	contains	the	identifier	of	the	credential	that	the
			caller	is	referring	to.			caller	is	referring	to.

				4.9.5.	Credential	Transport	enumeration	(enum	ExternalTransport)				4.9.5.	Credential	Transport	enumeration	(enum	ExternalTransport)

enum	Transport	{enum	Transport	{
				"usb",				"usb",
				"nfc",				"nfc",
				"ble"				"ble"
};};

			Authenticators	may	communicate	with	Clients	using	a	variety	of			Authenticators	may	communicate	with	Clients	using	a	variety	of
			transports.	This	enumeration	defines	a	hint	as	to	how	Clients	might			transports.	This	enumeration	defines	a	hint	as	to	how	Clients	might
			communicate	with	a	particular	Authenticator	in	order	to	obtain	an			communicate	with	a	particular	Authenticator	in	order	to	obtain	an
			assertion	for	a	specific	credential.	Note	that	these	hints	represent			assertion	for	a	specific	credential.	Note	that	these	hints	represent
			the	Relying	Party's	best	belief	as	to	how	an	Authenticator	may	be			the	Relying	Party's	best	belief	as	to	how	an	Authenticator	may	be
			reached.	A	Relying	Party	may	obtain	a	list	of	transports	hints	from			reached.	A	Relying	Party	may	obtain	a	list	of	transports	hints	from
			some	attestation	statement	formats	or	via	some	out-of-band	mechanism;			some	attestation	statement	formats	or	via	some	out-of-band	mechanism;
			it	is	outside	the	scope	of	this	specification	to	define	that	mechanism.			it	is	outside	the	scope	of	this	specification	to	define	that	mechanism.
					*	usb	-	the	respective	Authenticator	may	be	contacted	over	USB.					*	usb	-	the	respective	Authenticator	may	be	contacted	over	USB.
					*	nfc	-	the	respective	Authenticator	may	be	contacted	over	Near	Field					*	nfc	-	the	respective	Authenticator	may	be	contacted	over	Near	Field
							Communication	(NFC).							Communication	(NFC).
					*	ble	-	the	respective	Authenticator	may	be	contacted	over	Bluetooth					*	ble	-	the	respective	Authenticator	may	be	contacted	over	Bluetooth
							Smart	(Bluetooth	Low	Energy	/	BLE).							Smart	(Bluetooth	Low	Energy	/	BLE).

				4.9.6.	Cryptographic	Algorithm	Identifier	(type	AlgorithmIdentifier)				4.9.6.	Cryptographic	Algorithm	Identifier	(type	AlgorithmIdentifier)

			A	string	or	dictionary	identifying	a	cryptographic	algorithm	and			A	string	or	dictionary	identifying	a	cryptographic	algorithm	and
			optionally	a	set	of	parameters	for	that	algorithm.	This	type	is	defined			optionally	a	set	of	parameters	for	that	algorithm.	This	type	is	defined
			in	[WebCryptoAPI].			in	[WebCryptoAPI].

5.	WebAuthn	Authenticator	model5.	WebAuthn	Authenticator	model

			The	API	defined	in	this	specification	implies	a	specific	abstract			The	API	defined	in	this	specification	implies	a	specific	abstract
			functional	model	for	an	authenticator.	This	section	describes	the			functional	model	for	an	authenticator.	This	section	describes	the
			authenticator	model.	Client	platforms	may	implement	and	expose	this			authenticator	model.	Client	platforms	may	implement	and	expose	this
			abstract	model	in	any	way	desired.	For	instance,	this	abstract	model			abstract	model	in	any	way	desired.	For	instance,	this	abstract	model
			does	not	define	specific	error	codes	or	methods	of	returning	them;			does	not	define	specific	error	codes	or	methods	of	returning	them;
			however,	it	does	define	error	behavior	in	terms	of	the	needs	of	the			however,	it	does	define	error	behavior	in	terms	of	the	needs	of	the
			client.	Therefore,	specific	error	codes	are	mentioned	as	a	means	of			client.	Therefore,	specific	error	codes	are	mentioned	as	a	means	of
			showing	which	error	conditions	must	be	distinguishable	(or	not)	from			showing	which	error	conditions	must	be	distinguishable	(or	not)	from
			each	other	in	order	to	enable	a	compliant	and	secure	client			each	other	in	order	to	enable	a	compliant	and	secure	client
			implementation.	The	overall	requirement	is	that	the	behavior	of	the			implementation.	The	overall	requirement	is	that	the	behavior	of	the
			client's	Web	Authentication	API	implementation,	when	operating	on	the			client's	Web	Authentication	API	implementation,	when	operating	on	the
			authenticators	supported	by	that	platform,	MUST	be	indistinguishable			authenticators	supported	by	that	platform,	MUST	be	indistinguishable
			from	the	behavior	specified	in	4	Web	Authentication	API.			from	the	behavior	specified	in	4	Web	Authentication	API.

			In	this	abstract	model,	each	authenticator	stores	some	number	of	scoped			In	this	abstract	model,	each	authenticator	stores	some	number	of	scoped
			credentials.	Each	scoped	credential	has	an	identifier	which	is	unique			credentials.	Each	scoped	credential	has	an	identifier	which	is	unique
			(or	extremely	unlikely	to	be	duplicated)	among	all	scoped	credentials.			(or	extremely	unlikely	to	be	duplicated)	among	all	scoped	credentials.
			Each	credential	is	also	associated	with	a	Relying	Party,	whose	identity			Each	credential	is	also	associated	with	a	Relying	Party,	whose	identity
			is	represented	by	a	Relying	Party	Identifier	(RP	ID).			is	represented	by	a	Relying	Party	Identifier	(RP	ID).

			Each	authenticator	has	an	AAGUID,	which	is	a	128-bit	identifier	that			Each	authenticator	has	an	AAGUID,	which	is	a	128-bit	identifier	that
			indicates	the	type	(e.g.	make	and	model)	of	the	authenticator.	The			indicates	the	type	(e.g.	make	and	model)	of	the	authenticator.	The
			AAGUID	MUST	be	chosen	by	the	manufacturer	to	be	identical	across	all			AAGUID	MUST	be	chosen	by	the	manufacturer	to	be	identical	across	all
			substantially	identical	authenticators	made	by	that	manufacturer,	and			substantially	identical	authenticators	made	by	that	manufacturer,	and
			different	(with	probability	1-2^-128	or	greater)	from	the	AAGUIDs	of			different	(with	probability	1-2^-128	or	greater)	from	the	AAGUIDs	of
			all	other	types	of	authenticators.	The	RP	MAY	use	the	AAGUID	to	infer			all	other	types	of	authenticators.	The	RP	MAY	use	the	AAGUID	to	infer

/Users/jehodges/Documents/work/standards/W3C/webauthn/index-vgb-u2f-attestation-dc90eab.txt,	Top	line:	1178

			The	type	attribute	contains	the	type	of	the	credential	the	caller	is			The	type	attribute	contains	the	type	of	the	credential	the	caller	is
			referring	to.			referring	to.

			The	id	attribute	contains	the	identifier	of	the	credential	that	the			The	id	attribute	contains	the	identifier	of	the	credential	that	the
			caller	is	referring	to.			caller	is	referring	to.

				4.9.5.	Credential	Transport	enumeration	(enum	ExternalTransport)				4.9.5.	Credential	Transport	enumeration	(enum	ExternalTransport)

enum	Transport	{enum	Transport	{
				"usb",				"usb",
				"nfc",				"nfc",
				"ble"				"ble"
};};

			Authenticators	may	communicate	with	Clients	using	a	variety	of			Authenticators	may	communicate	with	Clients	using	a	variety	of
			transports.	This	enumeration	defines	a	hint	as	to	how	Clients	might			transports.	This	enumeration	defines	a	hint	as	to	how	Clients	might
			communicate	with	a	particular	Authenticator	in	order	to	obtain	an			communicate	with	a	particular	Authenticator	in	order	to	obtain	an
			assertion	for	a	specific	credential.	Note	that	these	hints	represent			assertion	for	a	specific	credential.	Note	that	these	hints	represent
			the	Relying	Party's	best	belief	as	to	how	an	Authenticator	may	be			the	Relying	Party's	best	belief	as	to	how	an	Authenticator	may	be
			reached.	A	Relying	Party	may	obtain	a	list	of	transports	hints	from			reached.	A	Relying	Party	may	obtain	a	list	of	transports	hints	from
			some	attestation	statement	formats	or	via	some	out-of-band	mechanism;			some	attestation	statement	formats	or	via	some	out-of-band	mechanism;
			it	is	outside	the	scope	of	this	specification	to	define	that	mechanism.			it	is	outside	the	scope	of	this	specification	to	define	that	mechanism.
					*	usb	-	the	respective	Authenticator	may	be	contacted	over	USB.					*	usb	-	the	respective	Authenticator	may	be	contacted	over	USB.
					*	nfc	-	the	respective	Authenticator	may	be	contacted	over	Near	Field					*	nfc	-	the	respective	Authenticator	may	be	contacted	over	Near	Field
							Communication	(NFC).							Communication	(NFC).
					*	ble	-	the	respective	Authenticator	may	be	contacted	over	Bluetooth					*	ble	-	the	respective	Authenticator	may	be	contacted	over	Bluetooth
							Smart	(Bluetooth	Low	Energy	/	BLE).							Smart	(Bluetooth	Low	Energy	/	BLE).

				4.9.6.	Cryptographic	Algorithm	Identifier	(type	AlgorithmIdentifier)				4.9.6.	Cryptographic	Algorithm	Identifier	(type	AlgorithmIdentifier)

			A	string	or	dictionary	identifying	a	cryptographic	algorithm	and			A	string	or	dictionary	identifying	a	cryptographic	algorithm	and
			optionally	a	set	of	parameters	for	that	algorithm.	This	type	is	defined			optionally	a	set	of	parameters	for	that	algorithm.	This	type	is	defined
			in	[WebCryptoAPI].			in	[WebCryptoAPI].

5.	WebAuthn	Authenticator	model5.	WebAuthn	Authenticator	model

			The	API	defined	in	this	specification	implies	a	specific	abstract			The	API	defined	in	this	specification	implies	a	specific	abstract
			functional	model	for	an	authenticator.	This	section	describes	the			functional	model	for	an	authenticator.	This	section	describes	the
			authenticator	model.	Client	platforms	may	implement	and	expose	this			authenticator	model.	Client	platforms	may	implement	and	expose	this
			abstract	model	in	any	way	desired.	For	instance,	this	abstract	model			abstract	model	in	any	way	desired.	For	instance,	this	abstract	model
			does	not	define	specific	error	codes	or	methods	of	returning	them;			does	not	define	specific	error	codes	or	methods	of	returning	them;
			however,	it	does	define	error	behavior	in	terms	of	the	needs	of	the			however,	it	does	define	error	behavior	in	terms	of	the	needs	of	the
			client.	Therefore,	specific	error	codes	are	mentioned	as	a	means	of			client.	Therefore,	specific	error	codes	are	mentioned	as	a	means	of
			showing	which	error	conditions	must	be	distinguishable	(or	not)	from			showing	which	error	conditions	must	be	distinguishable	(or	not)	from
			each	other	in	order	to	enable	a	compliant	and	secure	client			each	other	in	order	to	enable	a	compliant	and	secure	client
			implementation.	The	overall	requirement	is	that	the	behavior	of	the			implementation.	The	overall	requirement	is	that	the	behavior	of	the
			client's	Web	Authentication	API	implementation,	when	operating	on	the			client's	Web	Authentication	API	implementation,	when	operating	on	the
			authenticators	supported	by	that	platform,	MUST	be	indistinguishable			authenticators	supported	by	that	platform,	MUST	be	indistinguishable
			from	the	behavior	specified	in	4	Web	Authentication	API.			from	the	behavior	specified	in	4	Web	Authentication	API.

			In	this	abstract	model,	each	authenticator	stores	some	number	of	scoped			In	this	abstract	model,	each	authenticator	stores	some	number	of	scoped
			credentials.	Each	scoped	credential	has	an	identifier	which	is	unique			credentials.	Each	scoped	credential	has	an	identifier	which	is	unique
			(or	extremely	unlikely	to	be	duplicated)	among	all	scoped	credentials.			(or	extremely	unlikely	to	be	duplicated)	among	all	scoped	credentials.
			Each	credential	is	also	associated	with	a	Relying	Party,	whose	identity			Each	credential	is	also	associated	with	a	Relying	Party,	whose	identity
			is	represented	by	a	Relying	Party	Identifier	(RP	ID).			is	represented	by	a	Relying	Party	Identifier	(RP	ID).

			Each	authenticator	has	an	AAGUID,	which	is	a	128-bit	identifier	that			Each	authenticator	has	an	AAGUID,	which	is	a	128-bit	identifier	that
			indicates	the	type	(e.g.	make	and	model)	of	the	authenticator.	The			indicates	the	type	(e.g.	make	and	model)	of	the	authenticator.	The
			AAGUID	MUST	be	chosen	by	the	manufacturer	to	be	identical	across	all			AAGUID	MUST	be	chosen	by	the	manufacturer	to	be	identical	across	all
			substantially	identical	authenticators	made	by	that	manufacturer,	and			substantially	identical	authenticators	made	by	that	manufacturer,	and
			different	(with	probability	1-2^-128	or	greater)	from	the	AAGUIDs	of			different	(with	probability	1-2^-128	or	greater)	from	the	AAGUIDs	of
			all	other	types	of	authenticators.	The	RP	MAY	use	the	AAGUID	to	infer			all	other	types	of	authenticators.	The	RP	MAY	use	the	AAGUID	to	infer

20/72



/Users/jehodges/Documents/work/standards/W3C/webauthn/index-vgb-u2f-attestation-0d0fcea.txt,	Top	line:	1240

			certain	properties	of	the	authenticator,	such	as	certification	level			certain	properties	of	the	authenticator,	such	as	certification	level
			and	strength	of	key	protection,	using	information	from	other	sources.			and	strength	of	key	protection,	using	information	from	other	sources.

		5.1.	Authenticator	operations		5.1.	Authenticator	operations

			A	client	must	connect	to	an	authenticator	in	order	to	invoke	any	of	the			A	client	must	connect	to	an	authenticator	in	order	to	invoke	any	of	the
			operations	of	that	authenticator.	This	connection	defines	an			operations	of	that	authenticator.	This	connection	defines	an
			authenticator	session.	An	authenticator	must	maintain	isolation	between			authenticator	session.	An	authenticator	must	maintain	isolation	between
			sessions.	It	may	do	this	by	only	allowing	one	session	to	exist	at	any			sessions.	It	may	do	this	by	only	allowing	one	session	to	exist	at	any
			particular	time,	or	by	providing	more	complicated	session	management.			particular	time,	or	by	providing	more	complicated	session	management.

			The	following	operations	can	be	invoked	by	the	client	in	an			The	following	operations	can	be	invoked	by	the	client	in	an
			authenticator	session.			authenticator	session.

				5.1.1.	The	authenticatorMakeCredential	operation				5.1.1.	The	authenticatorMakeCredential	operation

			This	operation	must	be	invoked	in	an	authenticator	session	which	has	no			This	operation	must	be	invoked	in	an	authenticator	session	which	has	no
			other	operations	in	progress.	It	takes	the	following	input	parameters:			other	operations	in	progress.	It	takes	the	following	input	parameters:
					*	The	caller's	RP	ID,	as	determined	by	the	user	agent	and	the	client.					*	The	caller's	RP	ID,	as	determined	by	the	user	agent	and	the	client.
					*	The	clientDataHash,	which	is	the	hash	of	the	serialized	ClientData					*	The	clientDataHash,	which	is	the	hash	of	the	serialized	ClientData
							and	is	provided	by	the	client.							and	is	provided	by	the	client.
					*	The	Account	information	provided	by	the	Relying	Party.					*	The	Account	information	provided	by	the	Relying	Party.
					*	The	ScopedCredentialType	and	cryptographic	parameters	requested	by					*	The	ScopedCredentialType	and	cryptographic	parameters	requested	by
							the	Relying	Party,	with	the	cryptographic	algorithms	normalized	as							the	Relying	Party,	with	the	cryptographic	algorithms	normalized	as
							per	the	procedure	in	Web	Cryptography	API							per	the	procedure	in	Web	Cryptography	API
							algorithm-normalization-normalize-an-algorithm.							algorithm-normalization-normalize-an-algorithm.
					*	A	list	of	ScopedCredential	objects	provided	by	the	Relying	Party					*	A	list	of	ScopedCredential	objects	provided	by	the	Relying	Party
							with	the	intention	that,	if	any	of	these	are	known	to	the							with	the	intention	that,	if	any	of	these	are	known	to	the
							authenticator,	it	should	not	create	a	new	credential.							authenticator,	it	should	not	create	a	new	credential.
					*	Extension	data	created	by	the	client	based	on	the	extensions					*	Extension	data	created	by	the	client	based	on	the	extensions
							requested	by	the	Relying	Party.							requested	by	the	Relying	Party.

			When	this	operation	is	invoked,	the	authenticator	must	perform	the			When	this	operation	is	invoked,	the	authenticator	must	perform	the
			following	procedure:			following	procedure:
					*	Check	if	all	the	supplied	parameters	are	syntactically	well-formed					*	Check	if	all	the	supplied	parameters	are	syntactically	well-formed
							and	of	the	correct	length.	If	not,	return	an	error	code	equivalent							and	of	the	correct	length.	If	not,	return	an	error	code	equivalent
							to	UnknownError	and	terminate	the	operation.							to	UnknownError	and	terminate	the	operation.
					*	Check	if	at	least	one	of	the	specified	combinations	of					*	Check	if	at	least	one	of	the	specified	combinations	of
							ScopedCredentialType	and	cryptographic	parameters	is	supported.	If							ScopedCredentialType	and	cryptographic	parameters	is	supported.	If
							not,	return	an	error	code	equivalent	to	NotSupportedError	and							not,	return	an	error	code	equivalent	to	NotSupportedError	and
							terminate	the	operation.							terminate	the	operation.
					*	Check	if	a	credential	matching	any	of	the	supplied	ScopedCredential					*	Check	if	a	credential	matching	any	of	the	supplied	ScopedCredential
							identifiers	is	present	on	this	authenticator.	If	so,	return	an							identifiers	is	present	on	this	authenticator.	If	so,	return	an
							error	code	equivalent	to	NotAllowedError	and	terminate	the							error	code	equivalent	to	NotAllowedError	and	terminate	the
							operation.							operation.
					*	Prompt	the	user	for	consent	to	create	a	new	credential.	The	prompt					*	Prompt	the	user	for	consent	to	create	a	new	credential.	The	prompt
							for	obtaining	this	consent	is	shown	by	the	authenticator	if	it	has							for	obtaining	this	consent	is	shown	by	the	authenticator	if	it	has
							its	own	output	capability,	or	by	the	user	agent	otherwise.	If	the							its	own	output	capability,	or	by	the	user	agent	otherwise.	If	the
							user	denies	consent,	return	an	error	code	equivalent	to							user	denies	consent,	return	an	error	code	equivalent	to
							NotAllowedError	and	terminate	the	operation.							NotAllowedError	and	terminate	the	operation.
					*	Once	user	consent	has	been	obtained,	generate	a	new	credential					*	Once	user	consent	has	been	obtained,	generate	a	new	credential
							object:							object:
										+	Generate	a	set	of	cryptographic	keys	using	the	most	preferred										+	Generate	a	set	of	cryptographic	keys	using	the	most	preferred
												combination	of	ScopedCredentialType	and	cryptographic												combination	of	ScopedCredentialType	and	cryptographic
												parameters	supported	by	this	authenticator.												parameters	supported	by	this	authenticator.
										+	Generate	an	identifier	for	this	credential,	such	that	this										+	Generate	an	identifier	for	this	credential,	such	that	this
												identifier	is	globally	unique	with	high	probability	across	all												identifier	is	globally	unique	with	high	probability	across	all
												credentials	with	the	same	type	across	all	authenticators.												credentials	with	the	same	type	across	all	authenticators.
										+	Associate	the	credential	with	the	specified	RP	ID	and	the										+	Associate	the	credential	with	the	specified	RP	ID	and	the
												user's	account	identifier	id.												user's	account	identifier	id.
										+	Delete	any	older	credentials	with	the	same	RP	ID	and	id	that										+	Delete	any	older	credentials	with	the	same	RP	ID	and	id	that
												are	stored	locally	in	the	authenticator.												are	stored	locally	in	the	authenticator.

/Users/jehodges/Documents/work/standards/W3C/webauthn/index-vgb-u2f-attestation-dc90eab.txt,	Top	line:	1240

			certain	properties	of	the	authenticator,	such	as	certification	level			certain	properties	of	the	authenticator,	such	as	certification	level
			and	strength	of	key	protection,	using	information	from	other	sources.			and	strength	of	key	protection,	using	information	from	other	sources.

		5.1.	Authenticator	operations		5.1.	Authenticator	operations

			A	client	must	connect	to	an	authenticator	in	order	to	invoke	any	of	the			A	client	must	connect	to	an	authenticator	in	order	to	invoke	any	of	the
			operations	of	that	authenticator.	This	connection	defines	an			operations	of	that	authenticator.	This	connection	defines	an
			authenticator	session.	An	authenticator	must	maintain	isolation	between			authenticator	session.	An	authenticator	must	maintain	isolation	between
			sessions.	It	may	do	this	by	only	allowing	one	session	to	exist	at	any			sessions.	It	may	do	this	by	only	allowing	one	session	to	exist	at	any
			particular	time,	or	by	providing	more	complicated	session	management.			particular	time,	or	by	providing	more	complicated	session	management.

			The	following	operations	can	be	invoked	by	the	client	in	an			The	following	operations	can	be	invoked	by	the	client	in	an
			authenticator	session.			authenticator	session.

				5.1.1.	The	authenticatorMakeCredential	operation				5.1.1.	The	authenticatorMakeCredential	operation

			This	operation	must	be	invoked	in	an	authenticator	session	which	has	no			This	operation	must	be	invoked	in	an	authenticator	session	which	has	no
			other	operations	in	progress.	It	takes	the	following	input	parameters:			other	operations	in	progress.	It	takes	the	following	input	parameters:
					*	The	caller's	RP	ID,	as	determined	by	the	user	agent	and	the	client.					*	The	caller's	RP	ID,	as	determined	by	the	user	agent	and	the	client.
					*	The	clientDataHash,	which	is	the	hash	of	the	serialized	ClientData					*	The	clientDataHash,	which	is	the	hash	of	the	serialized	ClientData
							and	is	provided	by	the	client.							and	is	provided	by	the	client.
					*	The	Account	information	provided	by	the	Relying	Party.					*	The	Account	information	provided	by	the	Relying	Party.
					*	The	ScopedCredentialType	and	cryptographic	parameters	requested	by					*	The	ScopedCredentialType	and	cryptographic	parameters	requested	by
							the	Relying	Party,	with	the	cryptographic	algorithms	normalized	as							the	Relying	Party,	with	the	cryptographic	algorithms	normalized	as
							per	the	procedure	in	Web	Cryptography	API							per	the	procedure	in	Web	Cryptography	API
							algorithm-normalization-normalize-an-algorithm.							algorithm-normalization-normalize-an-algorithm.
					*	A	list	of	ScopedCredential	objects	provided	by	the	Relying	Party					*	A	list	of	ScopedCredential	objects	provided	by	the	Relying	Party
							with	the	intention	that,	if	any	of	these	are	known	to	the							with	the	intention	that,	if	any	of	these	are	known	to	the
							authenticator,	it	should	not	create	a	new	credential.							authenticator,	it	should	not	create	a	new	credential.
					*	Extension	data	created	by	the	client	based	on	the	extensions					*	Extension	data	created	by	the	client	based	on	the	extensions
							requested	by	the	Relying	Party.							requested	by	the	Relying	Party.

			When	this	operation	is	invoked,	the	authenticator	must	perform	the			When	this	operation	is	invoked,	the	authenticator	must	perform	the
			following	procedure:			following	procedure:
					*	Check	if	all	the	supplied	parameters	are	syntactically	well-formed					*	Check	if	all	the	supplied	parameters	are	syntactically	well-formed
							and	of	the	correct	length.	If	not,	return	an	error	code	equivalent							and	of	the	correct	length.	If	not,	return	an	error	code	equivalent
							to	UnknownError	and	terminate	the	operation.							to	UnknownError	and	terminate	the	operation.
					*	Check	if	at	least	one	of	the	specified	combinations	of					*	Check	if	at	least	one	of	the	specified	combinations	of
							ScopedCredentialType	and	cryptographic	parameters	is	supported.	If							ScopedCredentialType	and	cryptographic	parameters	is	supported.	If
							not,	return	an	error	code	equivalent	to	NotSupportedError	and							not,	return	an	error	code	equivalent	to	NotSupportedError	and
							terminate	the	operation.							terminate	the	operation.
					*	Check	if	a	credential	matching	any	of	the	supplied	ScopedCredential					*	Check	if	a	credential	matching	any	of	the	supplied	ScopedCredential
							identifiers	is	present	on	this	authenticator.	If	so,	return	an							identifiers	is	present	on	this	authenticator.	If	so,	return	an
							error	code	equivalent	to	NotAllowedError	and	terminate	the							error	code	equivalent	to	NotAllowedError	and	terminate	the
							operation.							operation.
					*	Prompt	the	user	for	consent	to	create	a	new	credential.	The	prompt					*	Prompt	the	user	for	consent	to	create	a	new	credential.	The	prompt
							for	obtaining	this	consent	is	shown	by	the	authenticator	if	it	has							for	obtaining	this	consent	is	shown	by	the	authenticator	if	it	has
							its	own	output	capability,	or	by	the	user	agent	otherwise.	If	the							its	own	output	capability,	or	by	the	user	agent	otherwise.	If	the
							user	denies	consent,	return	an	error	code	equivalent	to							user	denies	consent,	return	an	error	code	equivalent	to
							NotAllowedError	and	terminate	the	operation.							NotAllowedError	and	terminate	the	operation.
					*	Once	user	consent	has	been	obtained,	generate	a	new	credential					*	Once	user	consent	has	been	obtained,	generate	a	new	credential
							object:							object:
										+	Generate	a	set	of	cryptographic	keys	using	the	most	preferred										+	Generate	a	set	of	cryptographic	keys	using	the	most	preferred
												combination	of	ScopedCredentialType	and	cryptographic												combination	of	ScopedCredentialType	and	cryptographic
												parameters	supported	by	this	authenticator.												parameters	supported	by	this	authenticator.
										+	Generate	an	identifier	for	this	credential,	such	that	this										+	Generate	an	identifier	for	this	credential,	such	that	this
												identifier	is	globally	unique	with	high	probability	across	all												identifier	is	globally	unique	with	high	probability	across	all
												credentials	with	the	same	type	across	all	authenticators.												credentials	with	the	same	type	across	all	authenticators.
										+	Associate	the	credential	with	the	specified	RP	ID	and	the										+	Associate	the	credential	with	the	specified	RP	ID	and	the
												user's	account	identifier	id.												user's	account	identifier	id.
										+	Delete	any	older	credentials	with	the	same	RP	ID	and	id	that										+	Delete	any	older	credentials	with	the	same	RP	ID	and	id	that
												are	stored	locally	in	the	authenticator.												are	stored	locally	in	the	authenticator.

21/72



/Users/jehodges/Documents/work/standards/W3C/webauthn/index-vgb-u2f-attestation-0d0fcea.txt,	Top	line:	1302

					*	If	any	error	occurred	while	creating	the	new	credential	object,					*	If	any	error	occurred	while	creating	the	new	credential	object,
							return	an	error	code	equivalent	to	UnknownError	and	terminate	the							return	an	error	code	equivalent	to	UnknownError	and	terminate	the
							operation.							operation.
					*	Process	all	the	supported	extensions	requested	by	the	client,	and					*	Process	all	the	supported	extensions	requested	by	the	client,	and
							generate	an	authenticatorData	structure	with	attestation	data	as							generate	an	authenticatorData	structure	with	attestation	data	as
							specified	in	5.2.1	Authenticator	data.	Use	this	authenticatorData							specified	in	5.2.1	Authenticator	data.	Use	this	authenticatorData
							and	the	clientDataHash	received	from	the	client	to	create	an							and	the	clientDataHash	received	from	the	client	to	create	an
							attestation	object	for	the	new	credential	using	the	procedure							attestation	object	for	the	new	credential	using	the	procedure
							specified	in	5.3.3	Generating	an	Attestation	Object.	For	more							specified	in	5.3.3	Generating	an	Attestation	Object.	For	more
							details	on	attestation,	see	5.3	Credential	Attestation.							details	on	attestation,	see	5.3	Credential	Attestation.

			On	successful	completion	of	this	operation,	the	authenticator	must			On	successful	completion	of	this	operation,	the	authenticator	must
			return	the	attestation	object	to	the	client.			return	the	attestation	object	to	the	client.

				5.1.2.	The	authenticatorGetAssertion	operation				5.1.2.	The	authenticatorGetAssertion	operation

			This	operation	must	be	invoked	in	an	authenticator	session	which	has	no			This	operation	must	be	invoked	in	an	authenticator	session	which	has	no
			other	operations	in	progress.	It	takes	the	following	input	parameters:			other	operations	in	progress.	It	takes	the	following	input	parameters:
					*	The	caller's	RP	ID,	as	determined	by	the	user	agent	and	the	client.					*	The	caller's	RP	ID,	as	determined	by	the	user	agent	and	the	client.
					*	The	clientDataHash,	which	is	the	hash	of	the	serialized	ClientData					*	The	clientDataHash,	which	is	the	hash	of	the	serialized	ClientData
							and	is	provided	by	the	client.							and	is	provided	by	the	client.
					*	A	list	of	credentials	acceptable	to	the	Relying	Party	(possibly					*	A	list	of	credentials	acceptable	to	the	Relying	Party	(possibly
							filtered	by	the	client).							filtered	by	the	client).
					*	Extension	data	created	by	the	client	based	on	the	extensions					*	Extension	data	created	by	the	client	based	on	the	extensions
							requested	by	the	Relying	Party.							requested	by	the	Relying	Party.

			When	this	method	is	invoked,	the	authenticator	must	perform	the			When	this	method	is	invoked,	the	authenticator	must	perform	the
			following	procedure:			following	procedure:
					*	Check	if	all	the	supplied	parameters	are	syntactically	well-formed					*	Check	if	all	the	supplied	parameters	are	syntactically	well-formed
							and	of	the	correct	length.	If	not,	return	an	error	code	equivalent							and	of	the	correct	length.	If	not,	return	an	error	code	equivalent
							to	UnknownError	and	terminate	the	operation.							to	UnknownError	and	terminate	the	operation.
					*	If	a	list	of	credentials	was	supplied	by	the	client,	filter	it	by					*	If	a	list	of	credentials	was	supplied	by	the	client,	filter	it	by
							removing	those	credentials	that	are	not	present	on	this							removing	those	credentials	that	are	not	present	on	this
							authenticator.	If	no	list	was	supplied,	create	a	list	with	all							authenticator.	If	no	list	was	supplied,	create	a	list	with	all
							credentials	stored	for	the	caller's	RP	ID	(as	determined	by	an							credentials	stored	for	the	caller's	RP	ID	(as	determined	by	an
							exact	match	of	the	RP	ID).							exact	match	of	the	RP	ID).
					*	If	the	previous	step	resulted	in	an	empty	list,	return	an	error					*	If	the	previous	step	resulted	in	an	empty	list,	return	an	error
							code	equivalent	to	NotAllowedError	and	terminate	the	operation.							code	equivalent	to	NotAllowedError	and	terminate	the	operation.
					*	Prompt	the	user	to	select	a	credential	from	among	the	above	list.					*	Prompt	the	user	to	select	a	credential	from	among	the	above	list.
							Obtain	user	consent	for	using	this	credential.	The	prompt	for							Obtain	user	consent	for	using	this	credential.	The	prompt	for
							obtaining	this	consent	may	be	shown	by	the	authenticator	if	it	has							obtaining	this	consent	may	be	shown	by	the	authenticator	if	it	has
							its	own	output	capability,	or	by	the	user	agent	otherwise.							its	own	output	capability,	or	by	the	user	agent	otherwise.
					*	Process	all	the	supported	extensions	requested	by	the	client,	and					*	Process	all	the	supported	extensions	requested	by	the	client,	and
							generate	an	authenticatorData	structure	without	attestation	data	as							generate	an	authenticatorData	structure	without	attestation	data	as
							specified	in	5.2.1	Authenticator	data.	Use	this	authenticatorData							specified	in	5.2.1	Authenticator	data.	Use	this	authenticatorData
							and	the	clientDataHash	received	from	the	client	to	generate	an							and	the	clientDataHash	received	from	the	client	to	generate	an
							assertion	signature	using	the	private	key	of	the	selected							assertion	signature	using	the	private	key	of	the	selected
							credential,	as	specified	in	5.2.3	Generating	a	signature.							credential,	as	specified	in	5.2.3	Generating	a	signature.
					*	If	any	error	occurred	while	generating	the	assertion	signature,					*	If	any	error	occurred	while	generating	the	assertion	signature,
							return	an	error	code	equivalent	to	UnknownError	and	terminate	the							return	an	error	code	equivalent	to	UnknownError	and	terminate	the
							operation.							operation.

			On	successful	completion,	the	authenticator	must	return	to	the	user			On	successful	completion,	the	authenticator	must	return	to	the	user
			agent:			agent:
					*	The	identifier	of	the	credential	used	to	generate	the	signature.					*	The	identifier	of	the	credential	used	to	generate	the	signature.
					*	The	authenticatorData	used	to	generate	the	signature.					*	The	authenticatorData	used	to	generate	the	signature.
					*	The	assertion	signature.					*	The	assertion	signature.

			If	the	authenticator	cannot	find	any	credential	corresponding	to	the			If	the	authenticator	cannot	find	any	credential	corresponding	to	the
			specified	Relying	Party	that	matches	the	specified	criteria,	it			specified	Relying	Party	that	matches	the	specified	criteria,	it
			terminates	the	operation	and	returns	an	error.			terminates	the	operation	and	returns	an	error.

/Users/jehodges/Documents/work/standards/W3C/webauthn/index-vgb-u2f-attestation-dc90eab.txt,	Top	line:	1302

					*	If	any	error	occurred	while	creating	the	new	credential	object,					*	If	any	error	occurred	while	creating	the	new	credential	object,
							return	an	error	code	equivalent	to	UnknownError	and	terminate	the							return	an	error	code	equivalent	to	UnknownError	and	terminate	the
							operation.							operation.
					*	Process	all	the	supported	extensions	requested	by	the	client,	and					*	Process	all	the	supported	extensions	requested	by	the	client,	and
							generate	an	authenticatorData	structure	with	attestation	data	as							generate	an	authenticatorData	structure	with	attestation	data	as
							specified	in	5.2.1	Authenticator	data.	Use	this	authenticatorData							specified	in	5.2.1	Authenticator	data.	Use	this	authenticatorData
							and	the	clientDataHash	received	from	the	client	to	create	an							and	the	clientDataHash	received	from	the	client	to	create	an
							attestation	object	for	the	new	credential	using	the	procedure							attestation	object	for	the	new	credential	using	the	procedure
							specified	in	5.3.3	Generating	an	Attestation	Object.	For	more							specified	in	5.3.3	Generating	an	Attestation	Object.	For	more
							details	on	attestation,	see	5.3	Credential	Attestation.							details	on	attestation,	see	5.3	Credential	Attestation.

			On	successful	completion	of	this	operation,	the	authenticator	must			On	successful	completion	of	this	operation,	the	authenticator	must
			return	the	attestation	object	to	the	client.			return	the	attestation	object	to	the	client.

				5.1.2.	The	authenticatorGetAssertion	operation				5.1.2.	The	authenticatorGetAssertion	operation

			This	operation	must	be	invoked	in	an	authenticator	session	which	has	no			This	operation	must	be	invoked	in	an	authenticator	session	which	has	no
			other	operations	in	progress.	It	takes	the	following	input	parameters:			other	operations	in	progress.	It	takes	the	following	input	parameters:
					*	The	caller's	RP	ID,	as	determined	by	the	user	agent	and	the	client.					*	The	caller's	RP	ID,	as	determined	by	the	user	agent	and	the	client.
					*	The	clientDataHash,	which	is	the	hash	of	the	serialized	ClientData					*	The	clientDataHash,	which	is	the	hash	of	the	serialized	ClientData
							and	is	provided	by	the	client.							and	is	provided	by	the	client.
					*	A	list	of	credentials	acceptable	to	the	Relying	Party	(possibly					*	A	list	of	credentials	acceptable	to	the	Relying	Party	(possibly
							filtered	by	the	client).							filtered	by	the	client).
					*	Extension	data	created	by	the	client	based	on	the	extensions					*	Extension	data	created	by	the	client	based	on	the	extensions
							requested	by	the	Relying	Party.							requested	by	the	Relying	Party.

			When	this	method	is	invoked,	the	authenticator	must	perform	the			When	this	method	is	invoked,	the	authenticator	must	perform	the
			following	procedure:			following	procedure:
					*	Check	if	all	the	supplied	parameters	are	syntactically	well-formed					*	Check	if	all	the	supplied	parameters	are	syntactically	well-formed
							and	of	the	correct	length.	If	not,	return	an	error	code	equivalent							and	of	the	correct	length.	If	not,	return	an	error	code	equivalent
							to	UnknownError	and	terminate	the	operation.							to	UnknownError	and	terminate	the	operation.
					*	If	a	list	of	credentials	was	supplied	by	the	client,	filter	it	by					*	If	a	list	of	credentials	was	supplied	by	the	client,	filter	it	by
							removing	those	credentials	that	are	not	present	on	this							removing	those	credentials	that	are	not	present	on	this
							authenticator.	If	no	list	was	supplied,	create	a	list	with	all							authenticator.	If	no	list	was	supplied,	create	a	list	with	all
							credentials	stored	for	the	caller's	RP	ID	(as	determined	by	an							credentials	stored	for	the	caller's	RP	ID	(as	determined	by	an
							exact	match	of	the	RP	ID).							exact	match	of	the	RP	ID).
					*	If	the	previous	step	resulted	in	an	empty	list,	return	an	error					*	If	the	previous	step	resulted	in	an	empty	list,	return	an	error
							code	equivalent	to	NotAllowedError	and	terminate	the	operation.							code	equivalent	to	NotAllowedError	and	terminate	the	operation.
					*	Prompt	the	user	to	select	a	credential	from	among	the	above	list.					*	Prompt	the	user	to	select	a	credential	from	among	the	above	list.
							Obtain	user	consent	for	using	this	credential.	The	prompt	for							Obtain	user	consent	for	using	this	credential.	The	prompt	for
							obtaining	this	consent	may	be	shown	by	the	authenticator	if	it	has							obtaining	this	consent	may	be	shown	by	the	authenticator	if	it	has
							its	own	output	capability,	or	by	the	user	agent	otherwise.							its	own	output	capability,	or	by	the	user	agent	otherwise.
					*	Process	all	the	supported	extensions	requested	by	the	client,	and					*	Process	all	the	supported	extensions	requested	by	the	client,	and
							generate	an	authenticatorData	structure	without	attestation	data	as							generate	an	authenticatorData	structure	without	attestation	data	as
							specified	in	5.2.1	Authenticator	data.	Use	this	authenticatorData							specified	in	5.2.1	Authenticator	data.	Use	this	authenticatorData
							and	the	clientDataHash	received	from	the	client	to	generate	an							and	the	clientDataHash	received	from	the	client	to	generate	an
							assertion	signature	using	the	private	key	of	the	selected							assertion	signature	using	the	private	key	of	the	selected
							credential,	as	specified	in	5.2.3	Generating	a	signature.							credential,	as	specified	in	5.2.3	Generating	a	signature.
					*	If	any	error	occurred	while	generating	the	assertion	signature,					*	If	any	error	occurred	while	generating	the	assertion	signature,
							return	an	error	code	equivalent	to	UnknownError	and	terminate	the							return	an	error	code	equivalent	to	UnknownError	and	terminate	the
							operation.							operation.

			On	successful	completion,	the	authenticator	must	return	to	the	user			On	successful	completion,	the	authenticator	must	return	to	the	user
			agent:			agent:
					*	The	identifier	of	the	credential	used	to	generate	the	signature.					*	The	identifier	of	the	credential	used	to	generate	the	signature.
					*	The	authenticatorData	used	to	generate	the	signature.					*	The	authenticatorData	used	to	generate	the	signature.
					*	The	assertion	signature.					*	The	assertion	signature.

			If	the	authenticator	cannot	find	any	credential	corresponding	to	the			If	the	authenticator	cannot	find	any	credential	corresponding	to	the
			specified	Relying	Party	that	matches	the	specified	criteria,	it			specified	Relying	Party	that	matches	the	specified	criteria,	it
			terminates	the	operation	and	returns	an	error.			terminates	the	operation	and	returns	an	error.

22/72



/Users/jehodges/Documents/work/standards/W3C/webauthn/index-vgb-u2f-attestation-0d0fcea.txt,	Top	line:	1364

			If	the	user	refuses	consent,	the	authenticator	returns	an	appropriate			If	the	user	refuses	consent,	the	authenticator	returns	an	appropriate
			error	status	to	the	client.			error	status	to	the	client.

				5.1.3.	The	authenticatorCancel	operation				5.1.3.	The	authenticatorCancel	operation

			This	operation	takes	no	input	parameters	and	returns	no	result.			This	operation	takes	no	input	parameters	and	returns	no	result.

			When	this	operation	is	invoked	by	the	client	in	an	authenticator			When	this	operation	is	invoked	by	the	client	in	an	authenticator
			session,	it	has	the	effect	of	terminating	any			session,	it	has	the	effect	of	terminating	any
			authenticatorMakeCredential	or	authenticatorGetAssertion	operation			authenticatorMakeCredential	or	authenticatorGetAssertion	operation
			currently	in	progress	in	that	authenticator	session.	The	authenticator			currently	in	progress	in	that	authenticator	session.	The	authenticator
			stops	prompting	for,	or	accepting,	any	user	input	related	to			stops	prompting	for,	or	accepting,	any	user	input	related	to
			authorizing	the	canceled	operation.	The	client	ignores	any	further			authorizing	the	canceled	operation.	The	client	ignores	any	further
			responses	from	the	authenticator	for	the	canceled	operation.			responses	from	the	authenticator	for	the	canceled	operation.

			This	operation	is	ignored	if	it	is	invoked	in	an	authenticator	session			This	operation	is	ignored	if	it	is	invoked	in	an	authenticator	session
			which	does	not	have	an	authenticatorMakeCredential	or			which	does	not	have	an	authenticatorMakeCredential	or
			authenticatorGetAssertion	operation	currently	in	progress.			authenticatorGetAssertion	operation	currently	in	progress.

		5.2.	Signature	Format		5.2.	Signature	Format

			WebAuthn	signatures	are	bound	to	various	contextual	data.	These	data			WebAuthn	signatures	are	bound	to	various	contextual	data.	These	data
			are	observed,	and	added	at	different	levels	of	the	stack	as	a	signature			are	observed,	and	added	at	different	levels	of	the	stack	as	a	signature
			request	passes	from	the	server	to	the	authenticator.	In	verifying	a			request	passes	from	the	server	to	the	authenticator.	In	verifying	a
			signature,	the	server	checks	these	bindings	against	expected	values.			signature,	the	server	checks	these	bindings	against	expected	values.

			The	components	of	a	system	using	WebAuthn	can	be	divided	into	three			The	components	of	a	system	using	WebAuthn	can	be	divided	into	three
			layers:			layers:
				1.	The	Relying	Party	(RP),	which	uses	the	WebAuthn	services.	The	RP				1.	The	Relying	Party	(RP),	which	uses	the	WebAuthn	services.	The	RP
							consists	of	a	server	component	and	a	web-application	running	in	a							consists	of	a	server	component	and	a	web-application	running	in	a
							browser.							browser.
				2.	The	WebAuthn	Client	platform,	which	consists	of	the	User	Agent	and				2.	The	WebAuthn	Client	platform,	which	consists	of	the	User	Agent	and
							the	OS	and	device	on	which	it	executes.							the	OS	and	device	on	which	it	executes.
				3.	The	Authenticator	itself,	which	provides	key	management	and				3.	The	Authenticator	itself,	which	provides	key	management	and
							cryptographic	signatures.	This	may	be	embedded	in	the	WebAuthn							cryptographic	signatures.	This	may	be	embedded	in	the	WebAuthn
							client,	or	housed	in	a	separate	device	entirely.	In	the	latter							client,	or	housed	in	a	separate	device	entirely.	In	the	latter
							case,	the	interface	between	the	WebAuthn	client	and	the							case,	the	interface	between	the	WebAuthn	client	and	the
							authenticator	is	a	separately-defined	protocol.	The	authenticator							authenticator	is	a	separately-defined	protocol.	The	authenticator
							may	itself	contain	a	cryptographic	module	which	operates	at	a							may	itself	contain	a	cryptographic	module	which	operates	at	a
							higher	security	level	than	the	rest	of	the	authenticator.	This	is							higher	security	level	than	the	rest	of	the	authenticator.	This	is
							particularly	important	for	authenticators	that	are	embedded	in	the							particularly	important	for	authenticators	that	are	embedded	in	the
							WebAuthn	client,	as	in	those	cases	this	cryptographic	module	(which							WebAuthn	client,	as	in	those	cases	this	cryptographic	module	(which
							may,	for	example,	be	a	TPM)	could	be	considered	more	trustworthy							may,	for	example,	be	a	TPM)	could	be	considered	more	trustworthy
							than	the	rest	of	the	authenticator.							than	the	rest	of	the	authenticator.

			This	specification	defines	the	common	signature	format	shared	by	all			This	specification	defines	the	common	signature	format	shared	by	all
			the	above	layers.	This	includes	how	the	different	contextual	bindings			the	above	layers.	This	includes	how	the	different	contextual	bindings
			are	encoded,	signed	over,	and	delivered	to	the	RP.			are	encoded,	signed	over,	and	delivered	to	the	RP.

			The	goals	of	this	design	can	be	summarized	as	follows.			The	goals	of	this	design	can	be	summarized	as	follows.
					*	The	scheme	for	generating	signatures	should	accommodate	cases	where					*	The	scheme	for	generating	signatures	should	accommodate	cases	where
							the	link	between	the	client	platform	and	authenticator	is	very							the	link	between	the	client	platform	and	authenticator	is	very
							limited,	in	bandwidth	and/or	latency.	Examples	include	Bluetooth							limited,	in	bandwidth	and/or	latency.	Examples	include	Bluetooth
							Low	Energy	and	Near-Field	Communication.							Low	Energy	and	Near-Field	Communication.
					*	The	data	processed	by	the	authenticator	should	be	small	and	easy	to					*	The	data	processed	by	the	authenticator	should	be	small	and	easy	to
							interpret	in	low-level	code.	In	particular,	authenticators	should							interpret	in	low-level	code.	In	particular,	authenticators	should
							not	have	to	parse	high-level	encodings	such	as	JSON.							not	have	to	parse	high-level	encodings	such	as	JSON.
					*	Both	the	client	platform	and	the	authenticator	should	have	the					*	Both	the	client	platform	and	the	authenticator	should	have	the
							flexibility	to	add	contextual	bindings	as	needed.							flexibility	to	add	contextual	bindings	as	needed.
					*	The	design	aims	to	reuse	as	much	as	possible	of	existing	encoding					*	The	design	aims	to	reuse	as	much	as	possible	of	existing	encoding
							formats	in	order	to	aid	adoption	and	implementation.							formats	in	order	to	aid	adoption	and	implementation.

/Users/jehodges/Documents/work/standards/W3C/webauthn/index-vgb-u2f-attestation-dc90eab.txt,	Top	line:	1364

			If	the	user	refuses	consent,	the	authenticator	returns	an	appropriate			If	the	user	refuses	consent,	the	authenticator	returns	an	appropriate
			error	status	to	the	client.			error	status	to	the	client.

				5.1.3.	The	authenticatorCancel	operation				5.1.3.	The	authenticatorCancel	operation

			This	operation	takes	no	input	parameters	and	returns	no	result.			This	operation	takes	no	input	parameters	and	returns	no	result.

			When	this	operation	is	invoked	by	the	client	in	an	authenticator			When	this	operation	is	invoked	by	the	client	in	an	authenticator
			session,	it	has	the	effect	of	terminating	any			session,	it	has	the	effect	of	terminating	any
			authenticatorMakeCredential	or	authenticatorGetAssertion	operation			authenticatorMakeCredential	or	authenticatorGetAssertion	operation
			currently	in	progress	in	that	authenticator	session.	The	authenticator			currently	in	progress	in	that	authenticator	session.	The	authenticator
			stops	prompting	for,	or	accepting,	any	user	input	related	to			stops	prompting	for,	or	accepting,	any	user	input	related	to
			authorizing	the	canceled	operation.	The	client	ignores	any	further			authorizing	the	canceled	operation.	The	client	ignores	any	further
			responses	from	the	authenticator	for	the	canceled	operation.			responses	from	the	authenticator	for	the	canceled	operation.

			This	operation	is	ignored	if	it	is	invoked	in	an	authenticator	session			This	operation	is	ignored	if	it	is	invoked	in	an	authenticator	session
			which	does	not	have	an	authenticatorMakeCredential	or			which	does	not	have	an	authenticatorMakeCredential	or
			authenticatorGetAssertion	operation	currently	in	progress.			authenticatorGetAssertion	operation	currently	in	progress.

		5.2.	Signature	Format		5.2.	Signature	Format

			WebAuthn	signatures	are	bound	to	various	contextual	data.	These	data			WebAuthn	signatures	are	bound	to	various	contextual	data.	These	data
			are	observed,	and	added	at	different	levels	of	the	stack	as	a	signature			are	observed,	and	added	at	different	levels	of	the	stack	as	a	signature
			request	passes	from	the	server	to	the	authenticator.	In	verifying	a			request	passes	from	the	server	to	the	authenticator.	In	verifying	a
			signature,	the	server	checks	these	bindings	against	expected	values.			signature,	the	server	checks	these	bindings	against	expected	values.

			The	components	of	a	system	using	WebAuthn	can	be	divided	into	three			The	components	of	a	system	using	WebAuthn	can	be	divided	into	three
			layers:			layers:
				1.	The	Relying	Party	(RP),	which	uses	the	WebAuthn	services.	The	RP				1.	The	Relying	Party	(RP),	which	uses	the	WebAuthn	services.	The	RP
							consists	of	a	server	component	and	a	web-application	running	in	a							consists	of	a	server	component	and	a	web-application	running	in	a
							browser.							browser.
				2.	The	WebAuthn	Client	platform,	which	consists	of	the	User	Agent	and				2.	The	WebAuthn	Client	platform,	which	consists	of	the	User	Agent	and
							the	OS	and	device	on	which	it	executes.							the	OS	and	device	on	which	it	executes.
				3.	The	Authenticator	itself,	which	provides	key	management	and				3.	The	Authenticator	itself,	which	provides	key	management	and
							cryptographic	signatures.	This	may	be	embedded	in	the	WebAuthn							cryptographic	signatures.	This	may	be	embedded	in	the	WebAuthn
							client,	or	housed	in	a	separate	device	entirely.	In	the	latter							client,	or	housed	in	a	separate	device	entirely.	In	the	latter
							case,	the	interface	between	the	WebAuthn	client	and	the							case,	the	interface	between	the	WebAuthn	client	and	the
							authenticator	is	a	separately-defined	protocol.	The	authenticator							authenticator	is	a	separately-defined	protocol.	The	authenticator
							may	itself	contain	a	cryptographic	module	which	operates	at	a							may	itself	contain	a	cryptographic	module	which	operates	at	a
							higher	security	level	than	the	rest	of	the	authenticator.	This	is							higher	security	level	than	the	rest	of	the	authenticator.	This	is
							particularly	important	for	authenticators	that	are	embedded	in	the							particularly	important	for	authenticators	that	are	embedded	in	the
							WebAuthn	client,	as	in	those	cases	this	cryptographic	module	(which							WebAuthn	client,	as	in	those	cases	this	cryptographic	module	(which
							may,	for	example,	be	a	TPM)	could	be	considered	more	trustworthy							may,	for	example,	be	a	TPM)	could	be	considered	more	trustworthy
							than	the	rest	of	the	authenticator.							than	the	rest	of	the	authenticator.

			This	specification	defines	the	common	signature	format	shared	by	all			This	specification	defines	the	common	signature	format	shared	by	all
			the	above	layers.	This	includes	how	the	different	contextual	bindings			the	above	layers.	This	includes	how	the	different	contextual	bindings
			are	encoded,	signed	over,	and	delivered	to	the	RP.			are	encoded,	signed	over,	and	delivered	to	the	RP.

			The	goals	of	this	design	can	be	summarized	as	follows.			The	goals	of	this	design	can	be	summarized	as	follows.
					*	The	scheme	for	generating	signatures	should	accommodate	cases	where					*	The	scheme	for	generating	signatures	should	accommodate	cases	where
							the	link	between	the	client	platform	and	authenticator	is	very							the	link	between	the	client	platform	and	authenticator	is	very
							limited,	in	bandwidth	and/or	latency.	Examples	include	Bluetooth							limited,	in	bandwidth	and/or	latency.	Examples	include	Bluetooth
							Low	Energy	and	Near-Field	Communication.							Low	Energy	and	Near-Field	Communication.
					*	The	data	processed	by	the	authenticator	should	be	small	and	easy	to					*	The	data	processed	by	the	authenticator	should	be	small	and	easy	to
							interpret	in	low-level	code.	In	particular,	authenticators	should							interpret	in	low-level	code.	In	particular,	authenticators	should
							not	have	to	parse	high-level	encodings	such	as	JSON.							not	have	to	parse	high-level	encodings	such	as	JSON.
					*	Both	the	client	platform	and	the	authenticator	should	have	the					*	Both	the	client	platform	and	the	authenticator	should	have	the
							flexibility	to	add	contextual	bindings	as	needed.							flexibility	to	add	contextual	bindings	as	needed.
					*	The	design	aims	to	reuse	as	much	as	possible	of	existing	encoding					*	The	design	aims	to	reuse	as	much	as	possible	of	existing	encoding
							formats	in	order	to	aid	adoption	and	implementation.							formats	in	order	to	aid	adoption	and	implementation.

23/72



/Users/jehodges/Documents/work/standards/W3C/webauthn/index-vgb-u2f-attestation-0d0fcea.txt,	Top	line:	1426

			The	contextual	bindings	are	divided	in	two:	Those	added	by	the	RP	or			The	contextual	bindings	are	divided	in	two:	Those	added	by	the	RP	or
			the	client,	referred	to	as	client	data;	and	those	added	by	the			the	client,	referred	to	as	client	data;	and	those	added	by	the
			authenticator,	referred	to	as	the	authenticator	data.	The	client	data			authenticator,	referred	to	as	the	authenticator	data.	The	client	data
			must	be	signed	over,	but	an	authenticator	is	otherwise	not	interested			must	be	signed	over,	but	an	authenticator	is	otherwise	not	interested
			in	its	contents.	To	save	bandwidth	and	processing	requirements	on	the			in	its	contents.	To	save	bandwidth	and	processing	requirements	on	the
			authenticator,	the	client	hashes	the	ClientData	and	sends	only	the			authenticator,	the	client	hashes	the	ClientData	and	sends	only	the
			result	to	the	authenticator.	The	authenticator	signs	over	the			result	to	the	authenticator.	The	authenticator	signs	over	the
			combination	of	this	clientDataHash,	and	its	own	authenticator	data.			combination	of	this	clientDataHash,	and	its	own	authenticator	data.

				5.2.1.	Authenticator	data				5.2.1.	Authenticator	data

			The	authenticator	data	structure,	authenticatorData,	encodes	contextual			The	authenticator	data	structure,	authenticatorData,	encodes	contextual
			bindings	made	by	the	authenticator.	These	bindings	are	controlled	by			bindings	made	by	the	authenticator.	These	bindings	are	controlled	by
			the	authenticator	itself,	and	derive	their	trust	from	the	Relying			the	authenticator	itself,	and	derive	their	trust	from	the	Relying
			Party's	assessment	of	the	security	of	the	authenticator.	In	one	extreme			Party's	assessment	of	the	security	of	the	authenticator.	In	one	extreme
			case,	the	authenticator	may	be	embedded	in	the	client,	and	its	bindings			case,	the	authenticator	may	be	embedded	in	the	client,	and	its	bindings
			may	be	no	more	trustworthy	than	the	ClientData.	At	the	other	extreme,			may	be	no	more	trustworthy	than	the	ClientData.	At	the	other	extreme,
			the	authenticator	may	be	a	discrete	entity	with	high-security	hardware			the	authenticator	may	be	a	discrete	entity	with	high-security	hardware
			and	software,	connected	to	the	client	over	a	secure	channel.	In	both			and	software,	connected	to	the	client	over	a	secure	channel.	In	both
			cases,	the	Relying	Party	receives	the	authenticator	data	in	the	same			cases,	the	Relying	Party	receives	the	authenticator	data	in	the	same
			format,	and	uses	its	knowledge	of	the	authenticator	to	make	trust			format,	and	uses	its	knowledge	of	the	authenticator	to	make	trust
			decisions.			decisions.

			The	authenticator	data	has	a	compact	but	extensible	encoding.	This	is			The	authenticator	data	has	a	compact	but	extensible	encoding.	This	is
			desired	since	authenticators	can	be	devices	with	limited	capabilities			desired	since	authenticators	can	be	devices	with	limited	capabilities
			and	low	power	requirements,	with	much	simpler	software	stacks	than	the			and	low	power	requirements,	with	much	simpler	software	stacks	than	the
			client	platform	components.			client	platform	components.

			The	encoding	of	authenticator	data	is	a	byte	array	of	37	bytes	or	more,			The	encoding	of	authenticator	data	is	a	byte	array	of	37	bytes	or	more,
			as	follows.			as	follows.

			Length	(in	bytes)	Description			Length	(in	bytes)	Description
			32	SHA-256	hash	of	the	RP	ID	associated	with	the	credential.			32	SHA-256	hash	of	the	RP	ID	associated	with	the	credential.
			1	Flags	(bit	0	is	the	least	significant	bit):			1	Flags	(bit	0	is	the	least	significant	bit):
					*	Bit	0:	Test	of	User	Presence	(TUP)	result.					*	Bit	0:	Test	of	User	Presence	(TUP)	result.
					*	Bits	1-5:	Reserved	for	future	use	(RFU).					*	Bits	1-5:	Reserved	for	future	use	(RFU).
					*	Bit	6:	Attestation	data	included	(AT).	Indicates	whether	the					*	Bit	6:	Attestation	data	included	(AT).	Indicates	whether	the
							authenticator	added	attestation	data.							authenticator	added	attestation	data.
					*	Bit	7:	Extension	data	included	(ED).	Indicates	if	the	authenticator					*	Bit	7:	Extension	data	included	(ED).	Indicates	if	the	authenticator
							data	has	extensions.							data	has	extensions.

			4	Signature	counter	(signCount),	32-bit	unsigned	big-endian	integer.			4	Signature	counter	(signCount),	32-bit	unsigned	big-endian	integer.
			variable	(if	present)	Attestation	data	(if	present).	See	5.3.3			variable	(if	present)	Attestation	data	(if	present).	See	5.3.3
			Generating	an	Attestation	Object	for	details.	Its	length	depends	on	the			Generating	an	Attestation	Object	for	details.	Its	length	depends	on	the
			length	of	the	credential	public	key	and	credential	ID	being	attested.			length	of	the	credential	public	key	and	credential	ID	being	attested.
			variable	(if	present)	Extension-defined	authenticator	data.	This	is	a			variable	(if	present)	Extension-defined	authenticator	data.	This	is	a
			CBOR	[RFC7049]	map	with	extension	identifiers	as	keys,	and	extension			CBOR	[RFC7049]	map	with	extension	identifiers	as	keys,	and	extension
			authenticator	data	values	as	values.	See	8	WebAuthn	Extensions	for			authenticator	data	values	as	values.	See	8	WebAuthn	Extensions	for
			details.			details.

			The	RP	ID	is	originally	received	from	the	client	when	the	credential	is			The	RP	ID	is	originally	received	from	the	client	when	the	credential	is
			created,	and	again	when	an	assertion	is	generated.	However,	it	differs			created,	and	again	when	an	assertion	is	generated.	However,	it	differs
			from	other	client	data	in	some	important	ways.	First,	unlike	the	client			from	other	client	data	in	some	important	ways.	First,	unlike	the	client
			data,	the	RP	ID	of	a	credential	does	not	change	between	operations	but			data,	the	RP	ID	of	a	credential	does	not	change	between	operations	but
			instead	remains	the	same	for	the	lifetime	of	that	credential.	Secondly,			instead	remains	the	same	for	the	lifetime	of	that	credential.	Secondly,
			it	is	validated	by	the	authenticator	during	the			it	is	validated	by	the	authenticator	during	the
			authenticatorGetAssertion	operation,	by	making	sure	that	the	RP	ID			authenticatorGetAssertion	operation,	by	making	sure	that	the	RP	ID
			associated	with	the	requested	credential	exactly	matches	the	RP	ID			associated	with	the	requested	credential	exactly	matches	the	RP	ID
			supplied	by	the	client.			supplied	by	the	client.

			The	TUP	flag	SHALL	be	set	if	and	only	if	the	authenticator	detected	a			The	TUP	flag	SHALL	be	set	if	and	only	if	the	authenticator	detected	a
			user	through	an	authenticator	specific	gesture.	The	RFU	bits	in	the			user	through	an	authenticator	specific	gesture.	The	RFU	bits	in	the

/Users/jehodges/Documents/work/standards/W3C/webauthn/index-vgb-u2f-attestation-dc90eab.txt,	Top	line:	1426

			The	contextual	bindings	are	divided	in	two:	Those	added	by	the	RP	or			The	contextual	bindings	are	divided	in	two:	Those	added	by	the	RP	or
			the	client,	referred	to	as	client	data;	and	those	added	by	the			the	client,	referred	to	as	client	data;	and	those	added	by	the
			authenticator,	referred	to	as	the	authenticator	data.	The	client	data			authenticator,	referred	to	as	the	authenticator	data.	The	client	data
			must	be	signed	over,	but	an	authenticator	is	otherwise	not	interested			must	be	signed	over,	but	an	authenticator	is	otherwise	not	interested
			in	its	contents.	To	save	bandwidth	and	processing	requirements	on	the			in	its	contents.	To	save	bandwidth	and	processing	requirements	on	the
			authenticator,	the	client	hashes	the	ClientData	and	sends	only	the			authenticator,	the	client	hashes	the	ClientData	and	sends	only	the
			result	to	the	authenticator.	The	authenticator	signs	over	the			result	to	the	authenticator.	The	authenticator	signs	over	the
			combination	of	this	clientDataHash,	and	its	own	authenticator	data.			combination	of	this	clientDataHash,	and	its	own	authenticator	data.

				5.2.1.	Authenticator	data				5.2.1.	Authenticator	data

			The	authenticator	data	structure,	authenticatorData,	encodes	contextual			The	authenticator	data	structure,	authenticatorData,	encodes	contextual
			bindings	made	by	the	authenticator.	These	bindings	are	controlled	by			bindings	made	by	the	authenticator.	These	bindings	are	controlled	by
			the	authenticator	itself,	and	derive	their	trust	from	the	Relying			the	authenticator	itself,	and	derive	their	trust	from	the	Relying
			Party's	assessment	of	the	security	of	the	authenticator.	In	one	extreme			Party's	assessment	of	the	security	of	the	authenticator.	In	one	extreme
			case,	the	authenticator	may	be	embedded	in	the	client,	and	its	bindings			case,	the	authenticator	may	be	embedded	in	the	client,	and	its	bindings
			may	be	no	more	trustworthy	than	the	ClientData.	At	the	other	extreme,			may	be	no	more	trustworthy	than	the	ClientData.	At	the	other	extreme,
			the	authenticator	may	be	a	discrete	entity	with	high-security	hardware			the	authenticator	may	be	a	discrete	entity	with	high-security	hardware
			and	software,	connected	to	the	client	over	a	secure	channel.	In	both			and	software,	connected	to	the	client	over	a	secure	channel.	In	both
			cases,	the	Relying	Party	receives	the	authenticator	data	in	the	same			cases,	the	Relying	Party	receives	the	authenticator	data	in	the	same
			format,	and	uses	its	knowledge	of	the	authenticator	to	make	trust			format,	and	uses	its	knowledge	of	the	authenticator	to	make	trust
			decisions.			decisions.

			The	authenticator	data	has	a	compact	but	extensible	encoding.	This	is			The	authenticator	data	has	a	compact	but	extensible	encoding.	This	is
			desired	since	authenticators	can	be	devices	with	limited	capabilities			desired	since	authenticators	can	be	devices	with	limited	capabilities
			and	low	power	requirements,	with	much	simpler	software	stacks	than	the			and	low	power	requirements,	with	much	simpler	software	stacks	than	the
			client	platform	components.			client	platform	components.

			The	encoding	of	authenticator	data	is	a	byte	array	of	37	bytes	or	more,			The	encoding	of	authenticator	data	is	a	byte	array	of	37	bytes	or	more,
			as	follows.			as	follows.

			Length	(in	bytes)	Description			Length	(in	bytes)	Description
			32	SHA-256	hash	of	the	RP	ID	associated	with	the	credential.			32	SHA-256	hash	of	the	RP	ID	associated	with	the	credential.
			1	Flags	(bit	0	is	the	least	significant	bit):			1	Flags	(bit	0	is	the	least	significant	bit):
					*	Bit	0:	Test	of	User	Presence	(TUP)	result.					*	Bit	0:	Test	of	User	Presence	(TUP)	result.
					*	Bits	1-5:	Reserved	for	future	use	(RFU).					*	Bits	1-5:	Reserved	for	future	use	(RFU).
					*	Bit	6:	Attestation	data	included	(AT).	Indicates	whether	the					*	Bit	6:	Attestation	data	included	(AT).	Indicates	whether	the
							authenticator	added	attestation	data.							authenticator	added	attestation	data.
					*	Bit	7:	Extension	data	included	(ED).	Indicates	if	the	authenticator					*	Bit	7:	Extension	data	included	(ED).	Indicates	if	the	authenticator
							data	has	extensions.							data	has	extensions.

			4	Signature	counter	(signCount),	32-bit	unsigned	big-endian	integer.			4	Signature	counter	(signCount),	32-bit	unsigned	big-endian	integer.
			variable	(if	present)	Attestation	data	(if	present).	See	5.3.3			variable	(if	present)	Attestation	data	(if	present).	See	5.3.3
			Generating	an	Attestation	Object	for	details.	Its	length	depends	on	the			Generating	an	Attestation	Object	for	details.	Its	length	depends	on	the
			length	of	the	credential	public	key	and	credential	ID	being	attested.			length	of	the	credential	public	key	and	credential	ID	being	attested.
			variable	(if	present)	Extension-defined	authenticator	data.	This	is	a			variable	(if	present)	Extension-defined	authenticator	data.	This	is	a
			CBOR	[RFC7049]	map	with	extension	identifiers	as	keys,	and	extension			CBOR	[RFC7049]	map	with	extension	identifiers	as	keys,	and	extension
			authenticator	data	values	as	values.	See	8	WebAuthn	Extensions	for			authenticator	data	values	as	values.	See	8	WebAuthn	Extensions	for
			details.			details.

			The	RP	ID	is	originally	received	from	the	client	when	the	credential	is			The	RP	ID	is	originally	received	from	the	client	when	the	credential	is
			created,	and	again	when	an	assertion	is	generated.	However,	it	differs			created,	and	again	when	an	assertion	is	generated.	However,	it	differs
			from	other	client	data	in	some	important	ways.	First,	unlike	the	client			from	other	client	data	in	some	important	ways.	First,	unlike	the	client
			data,	the	RP	ID	of	a	credential	does	not	change	between	operations	but			data,	the	RP	ID	of	a	credential	does	not	change	between	operations	but
			instead	remains	the	same	for	the	lifetime	of	that	credential.	Secondly,			instead	remains	the	same	for	the	lifetime	of	that	credential.	Secondly,
			it	is	validated	by	the	authenticator	during	the			it	is	validated	by	the	authenticator	during	the
			authenticatorGetAssertion	operation,	by	making	sure	that	the	RP	ID			authenticatorGetAssertion	operation,	by	making	sure	that	the	RP	ID
			associated	with	the	requested	credential	exactly	matches	the	RP	ID			associated	with	the	requested	credential	exactly	matches	the	RP	ID
			supplied	by	the	client.			supplied	by	the	client.

			The	TUP	flag	SHALL	be	set	if	and	only	if	the	authenticator	detected	a			The	TUP	flag	SHALL	be	set	if	and	only	if	the	authenticator	detected	a
			user	through	an	authenticator	specific	gesture.	The	RFU	bits	in	the			user	through	an	authenticator	specific	gesture.	The	RFU	bits	in	the

24/72



/Users/jehodges/Documents/work/standards/W3C/webauthn/index-vgb-u2f-attestation-0d0fcea.txt,	Top	line:	1488

			flags	byte	SHALL	be	set	to	zero.			flags	byte	SHALL	be	set	to	zero.

			For	attestation	signatures,	the	authenticator	MUST	set	the	AT	flag	and			For	attestation	signatures,	the	authenticator	MUST	set	the	AT	flag	and
			include	the	attestation	data.	For	authentication	signatures,	the	AT			include	the	attestation	data.	For	authentication	signatures,	the	AT
			flag	MUST	NOT	be	set	and	the	attestation	data	MUST	NOT	be	included.			flag	MUST	NOT	be	set	and	the	attestation	data	MUST	NOT	be	included.

			If	the	authenticator	does	not	include	any	extension	data,	it	MUST	set			If	the	authenticator	does	not	include	any	extension	data,	it	MUST	set
			the	ED	flag	in	the	first	byte	to	zero,	and	to	one	if	extension	data	is			the	ED	flag	in	the	first	byte	to	zero,	and	to	one	if	extension	data	is
			included.			included.

			The	figure	below	shows	a	visual	representation	of	the	authenticator			The	figure	below	shows	a	visual	representation	of	the	authenticator
			data	structure.			data	structure.
			[fido-signature-formats-figure1.svg]	authenticatorData	layout.			[fido-signature-formats-figure1.svg]	authenticatorData	layout.

			Note	that	the	authenticatorData	describes	its	own	length:	If	the	AT	and			Note	that	the	authenticatorData	describes	its	own	length:	If	the	AT	and
			ED	flags	are	not	set,	it	is	always	37	bytes	long.	The	attestation	data			ED	flags	are	not	set,	it	is	always	37	bytes	long.	The	attestation	data
			(which	is	only	present	if	the	AT	flag	is	set)	describes	its	own	length.			(which	is	only	present	if	the	AT	flag	is	set)	describes	its	own	length.
			If	the	ED	flag	is	set,	then	the	total	length	is	37	bytes	plus	the			If	the	ED	flag	is	set,	then	the	total	length	is	37	bytes	plus	the
			length	of	the	attestation	data,	plus	the	length	of	the	CBOR	map	that			length	of	the	attestation	data,	plus	the	length	of	the	CBOR	map	that
			follows.			follows.

				5.2.2.	Attestation	data				5.2.2.	Attestation	data

			Attestation	data	is	added	to	the	authenticatorData	when	generating	an			Attestation	data	is	added	to	the	authenticatorData	when	generating	an
			attestation	object	for	a	given	credential.	It	has	the	following	format:			attestation	object	for	a	given	credential.	It	has	the	following	format:

			Length	(in	bytes)																									Description			Length	(in	bytes)																									Description
			16																The	AAGUID	of	the	authenticator.			16																The	AAGUID	of	the	authenticator.
			2																	Byte	length	L	of	Credential	ID			2																	Byte	length	L	of	Credential	ID
			L																	Credential	ID			L																	Credential	ID
			variable	Credential	public	key	encoded	in	CBOR	format.	This	is	a	CBOR			variable	Credential	public	key	encoded	in	CBOR	format.	This	is	a	CBOR
			map	comprising	the	following	fields:			map	comprising	the	following	fields:

			alg			alg

										This	is	the	name	of	the	signature	algorithm	associated	with	the										This	is	the	name	of	the	signature	algorithm	associated	with	the
										credential	private	key,	expressed	as	defined	in	[RFC7518]										credential	private	key,	expressed	as	defined	in	[RFC7518]
										section	3.1.	Specifically,	the	following	values	are	supported:										section	3.1.	Specifically,	the	following	values	are	supported:
										"ES256",	"ES384",	"ES512",	"RS256",	"RS384",	"RS512",	"PS256",										"ES256",	"ES384",	"ES512",	"RS256",	"RS384",	"RS512",	"PS256",
										"PS384"	and	"PS512".										"PS384"	and	"PS512".

			(public	key	fields)			(public	key	fields)

										These	fields	contain	the	public	key,	expressed	in	the	format										These	fields	contain	the	public	key,	expressed	in	the	format
										defined	by	[RFC7518]	section	6.	Specifically,	for	ECC	keys,	the										defined	by	[RFC7518]	section	6.	Specifically,	for	ECC	keys,	the
										x	and	y	fields	are	present	as	defined	in	[RFC7518]	sections										x	and	y	fields	are	present	as	defined	in	[RFC7518]	sections
										6.2.1.2	and	6.2.1.3,	and	for	RSA	keys,	the	n	and	e	fields	are										6.2.1.2	and	6.2.1.3,	and	for	RSA	keys,	the	n	and	e	fields	are
										present	as	defined	in	[RFC7518]	sections	6.3.1.1	and	6.3.1.2.										present	as	defined	in	[RFC7518]	sections	6.3.1.1	and	6.3.1.2.

				5.2.3.	Generating	a	signature				5.2.3.	Generating	a	signature

			Authenticators	produce	cryptographic	signatures	for	two	distinct			Authenticators	produce	cryptographic	signatures	for	two	distinct
			purposes:			purposes:
				1.	An	attestation	signature	is	produced	when	a	new	credential	is				1.	An	attestation	signature	is	produced	when	a	new	credential	is
							created,	and	provides	cryptographic	proof	of	certain	properties	of							created,	and	provides	cryptographic	proof	of	certain	properties	of
							the	credential	and	the	authenticator.	For	instance,	an	attestation							the	credential	and	the	authenticator.	For	instance,	an	attestation
							signature	asserts	the	type	of	authenticator	(as	denoted	by	its							signature	asserts	the	type	of	authenticator	(as	denoted	by	its
							AAGUID)	and	the	public	key	of	the	credential.	The	attestation							AAGUID)	and	the	public	key	of	the	credential.	The	attestation
							signature	is	signed	by	an	authority	key,	which	is	chosen	depending							signature	is	signed	by	an	authority	key,	which	is	chosen	depending
							on	the	type	of	attestation	desired.							on	the	type	of	attestation	desired.
				2.	An	assertion	signature	is	produced	when	the				2.	An	assertion	signature	is	produced	when	the
							authenticatorGetAssertion	method	is	invoked.	It	asserts	that	the							authenticatorGetAssertion	method	is	invoked.	It	asserts	that	the

/Users/jehodges/Documents/work/standards/W3C/webauthn/index-vgb-u2f-attestation-dc90eab.txt,	Top	line:	1488

			flags	byte	SHALL	be	set	to	zero.			flags	byte	SHALL	be	set	to	zero.

			For	attestation	signatures,	the	authenticator	MUST	set	the	AT	flag	and			For	attestation	signatures,	the	authenticator	MUST	set	the	AT	flag	and
			include	the	attestation	data.	For	authentication	signatures,	the	AT			include	the	attestation	data.	For	authentication	signatures,	the	AT
			flag	MUST	NOT	be	set	and	the	attestation	data	MUST	NOT	be	included.			flag	MUST	NOT	be	set	and	the	attestation	data	MUST	NOT	be	included.

			If	the	authenticator	does	not	include	any	extension	data,	it	MUST	set			If	the	authenticator	does	not	include	any	extension	data,	it	MUST	set
			the	ED	flag	in	the	first	byte	to	zero,	and	to	one	if	extension	data	is			the	ED	flag	in	the	first	byte	to	zero,	and	to	one	if	extension	data	is
			included.			included.

			The	figure	below	shows	a	visual	representation	of	the	authenticator			The	figure	below	shows	a	visual	representation	of	the	authenticator
			data	structure.			data	structure.
			[fido-signature-formats-figure1.svg]	authenticatorData	layout.			[fido-signature-formats-figure1.svg]	authenticatorData	layout.

			Note	that	the	authenticatorData	describes	its	own	length:	If	the	AT	and			Note	that	the	authenticatorData	describes	its	own	length:	If	the	AT	and
			ED	flags	are	not	set,	it	is	always	37	bytes	long.	The	attestation	data			ED	flags	are	not	set,	it	is	always	37	bytes	long.	The	attestation	data
			(which	is	only	present	if	the	AT	flag	is	set)	describes	its	own	length.			(which	is	only	present	if	the	AT	flag	is	set)	describes	its	own	length.
			If	the	ED	flag	is	set,	then	the	total	length	is	37	bytes	plus	the			If	the	ED	flag	is	set,	then	the	total	length	is	37	bytes	plus	the
			length	of	the	attestation	data,	plus	the	length	of	the	CBOR	map	that			length	of	the	attestation	data,	plus	the	length	of	the	CBOR	map	that
			follows.			follows.

				5.2.2.	Attestation	data				5.2.2.	Attestation	data

			Attestation	data	is	added	to	the	authenticatorData	when	generating	an			Attestation	data	is	added	to	the	authenticatorData	when	generating	an
			attestation	object	for	a	given	credential.	It	has	the	following	format:			attestation	object	for	a	given	credential.	It	has	the	following	format:

			Length	(in	bytes)																									Description			Length	(in	bytes)																									Description
			16																The	AAGUID	of	the	authenticator.			16																The	AAGUID	of	the	authenticator.
			2																	Byte	length	L	of	Credential	ID			2																	Byte	length	L	of	Credential	ID
			L																	Credential	ID			L																	Credential	ID
			variable	Credential	public	key	encoded	in	CBOR	format.	This	is	a	CBOR			variable	Credential	public	key	encoded	in	CBOR	format.	This	is	a	CBOR
			map	comprising	the	following	fields:			map	comprising	the	following	fields:

			alg			alg

										This	is	the	name	of	the	signature	algorithm	associated	with	the										This	is	the	name	of	the	signature	algorithm	associated	with	the
										credential	private	key,	expressed	as	defined	in	[RFC7518]										credential	private	key,	expressed	as	defined	in	[RFC7518]
										section	3.1.	Specifically,	the	following	values	are	supported:										section	3.1.	Specifically,	the	following	values	are	supported:
										"ES256",	"ES384",	"ES512",	"RS256",	"RS384",	"RS512",	"PS256",										"ES256",	"ES384",	"ES512",	"RS256",	"RS384",	"RS512",	"PS256",
										"PS384"	and	"PS512".										"PS384"	and	"PS512".

			(public	key	fields)			(public	key	fields)

										These	fields	contain	the	public	key,	expressed	in	the	format										These	fields	contain	the	public	key,	expressed	in	the	format
										defined	by	[RFC7518]	section	6.	Specifically,	for	ECC	keys,	the										defined	by	[RFC7518]	section	6.	Specifically,	for	ECC	keys,	the
										x	and	y	fields	are	present	as	defined	in	[RFC7518]	sections										x	and	y	fields	are	present	as	defined	in	[RFC7518]	sections
										6.2.1.2	and	6.2.1.3,	and	for	RSA	keys,	the	n	and	e	fields	are										6.2.1.2	and	6.2.1.3,	and	for	RSA	keys,	the	n	and	e	fields	are
										present	as	defined	in	[RFC7518]	sections	6.3.1.1	and	6.3.1.2.										present	as	defined	in	[RFC7518]	sections	6.3.1.1	and	6.3.1.2.

				5.2.3.	Generating	a	signature				5.2.3.	Generating	a	signature

			Authenticators	produce	cryptographic	signatures	for	two	distinct			Authenticators	produce	cryptographic	signatures	for	two	distinct
			purposes:			purposes:
				1.	An	attestation	signature	is	produced	when	a	new	credential	is				1.	An	attestation	signature	is	produced	when	a	new	credential	is
							created,	and	provides	cryptographic	proof	of	certain	properties	of							created,	and	provides	cryptographic	proof	of	certain	properties	of
							the	credential	and	the	authenticator.	For	instance,	an	attestation							the	credential	and	the	authenticator.	For	instance,	an	attestation
							signature	asserts	the	type	of	authenticator	(as	denoted	by	its							signature	asserts	the	type	of	authenticator	(as	denoted	by	its
							AAGUID)	and	the	public	key	of	the	credential.	The	attestation							AAGUID)	and	the	public	key	of	the	credential.	The	attestation
							signature	is	signed	by	an	authority	key,	which	is	chosen	depending							signature	is	signed	by	an	authority	key,	which	is	chosen	depending
							on	the	type	of	attestation	desired.							on	the	type	of	attestation	desired.
				2.	An	assertion	signature	is	produced	when	the				2.	An	assertion	signature	is	produced	when	the
							authenticatorGetAssertion	method	is	invoked.	It	asserts	that	the							authenticatorGetAssertion	method	is	invoked.	It	asserts	that	the

25/72



/Users/jehodges/Documents/work/standards/W3C/webauthn/index-vgb-u2f-attestation-0d0fcea.txt,	Top	line:	1550

							user	has	consented	to	a	specific	transaction.	Thus,	an	assertion							user	has	consented	to	a	specific	transaction.	Thus,	an	assertion
							signature	asserts	the	identity	of	the	requester,	and	provides							signature	asserts	the	identity	of	the	requester,	and	provides
							additional	information	that	might	be	useful	to	the	caller,	such	as							additional	information	that	might	be	useful	to	the	caller,	such	as
							the	means	by	which	user	consent	was	provided,	and	the	prompt	that							the	means	by	which	user	consent	was	provided,	and	the	prompt	that
							was	shown	to	the	user	by	the	authenticator.							was	shown	to	the	user	by	the	authenticator.

			Both	types	of	signature	must	assert	the	integrity	of	both	the	client			Both	types	of	signature	must	assert	the	integrity	of	both	the	client
			data	and	the	authenticator	data.	Thus,	in	both	cases	the	authenticator			data	and	the	authenticator	data.	Thus,	in	both	cases	the	authenticator
			computes	a	signature	over	a	combination	of	the	clientDataHash	and	the			computes	a	signature	over	a	combination	of	the	clientDataHash	and	the
			authenticatorData.			authenticatorData.

			To	generate	either	type	of	signature,	the	authenticator	must	first			To	generate	either	type	of	signature,	the	authenticator	must	first
			select	an	appropriate	private	key	for	the	signature.	Then,	the			select	an	appropriate	private	key	for	the	signature.	Then,	the
			authenticator	concatenates	the	authenticatorData	and	clientDataHash,			authenticator	concatenates	the	authenticatorData	and	clientDataHash,
			and	signs	the	result	using	the	selected	private	key	as	shown	in	the			and	signs	the	result	using	the	selected	private	key	as	shown	in	the
			figure	below.			figure	below.
			[fido-signature-formats-figure2.svg]	Generating	a	signature	on	the			[fido-signature-formats-figure2.svg]	Generating	a	signature	on	the
			authenticator.			authenticator.

			A	simple,	undelimited	concatenation	is	safe	to	use	here	because	the			A	simple,	undelimited	concatenation	is	safe	to	use	here	because	the
			authenticatorData	describes	its	own	length.	The	clientDataHash	(which			authenticatorData	describes	its	own	length.	The	clientDataHash	(which
			potentially	has	a	variable	length)	is	always	the	last	element.			potentially	has	a	variable	length)	is	always	the	last	element.

				5.2.4.	Verifying	a	signature				5.2.4.	Verifying	a	signature

			This	section	specifies	the	algorithm	for	verifying	any	signature			This	section	specifies	the	algorithm	for	verifying	any	signature
			generated	using	the	method	in	5.2.3	Generating	a	signature.			generated	using	the	method	in	5.2.3	Generating	a	signature.

			To	verify	a	signature	S	given	a	claimed	clientDataJSON	C	and	a	claimed			To	verify	a	signature	S	given	a	claimed	clientDataJSON	C	and	a	claimed
			authenticatorData	data	using	a	given	public	key,	the	Relying	Party			authenticatorData	data	using	a	given	public	key,	the	Relying	Party
			shall:			shall:
				1.	Perform	JSON	decoding	on	C	to	extract	the	ClientData	used	for	the				1.	Perform	JSON	decoding	on	C	to	extract	the	ClientData	used	for	the
							signature.							signature.
				2.	Verify	that	the	challenge	in	the	ClientData	matches	the	challenge				2.	Verify	that	the	challenge	in	the	ClientData	matches	the	challenge
							that	was	sent	to	the	authenticator.							that	was	sent	to	the	authenticator.
				3.	Verify	that	the	origin	in	the	ClientData	matches	the	Relying				3.	Verify	that	the	origin	in	the	ClientData	matches	the	Relying
							Party's	origin.							Party's	origin.
				4.	Verify	that	the	tokenBinding	(if	present)	in	the	ClientData	matches				4.	Verify	that	the	tokenBinding	(if	present)	in	the	ClientData	matches
							the	token	binding	ID	for	the	TLS	connection	over	which	the							the	token	binding	ID	for	the	TLS	connection	over	which	the
							signature	was	obtained.							signature	was	obtained.
				5.	Verify	that	the	extensions	in	the	ClientData	is	a	proper	subset	of				5.	Verify	that	the	extensions	in	the	ClientData	is	a	proper	subset	of
							the	extensions	requested	by	the	RP.							the	extensions	requested	by	the	RP.
				6.	Verify	that	the	RP	ID	hash	in	data	is	indeed	the	SHA-256	hash	of				6.	Verify	that	the	RP	ID	hash	in	data	is	indeed	the	SHA-256	hash	of
							the	RP	ID	expected	by	the	RP.							the	RP	ID	expected	by	the	RP.
				7.	Compute	the	clientDataHash	over	C	using	the	hashAlg	algorithm	found				7.	Compute	the	clientDataHash	over	C	using	the	hashAlg	algorithm	found
							in	the	ClientData	structure.							in	the	ClientData	structure.
				8.	Use	the	given	public	key	to	verify	that	S	is	a	valid	signature	over				8.	Use	the	given	public	key	to	verify	that	S	is	a	valid	signature	over
							the	binary	concatenation	of	data	and	the	clientDataHash	computed							the	binary	concatenation	of	data	and	the	clientDataHash	computed
							above.							above.

			If	all	the	above	steps	succeed,	then	the	signature	is	valid,	otherwise			If	all	the	above	steps	succeed,	then	the	signature	is	valid,	otherwise
			it	is	invalid.			it	is	invalid.

		5.3.	Credential	Attestation		5.3.	Credential	Attestation

			Authenticators	must	also	provide	some	form	of	attestation.	The	basic			Authenticators	must	also	provide	some	form	of	attestation.	The	basic
			requirement	is	that	the	authenticator	can	produce,	for	each	credential			requirement	is	that	the	authenticator	can	produce,	for	each	credential
			public	key,	attestation	information	that	can	be	verified	by	a	Relying			public	key,	attestation	information	that	can	be	verified	by	a	Relying
			Party.	Typically,	this	information	contains	a	signature	by	an			Party.	Typically,	this	information	contains	a	signature	by	an
			attestation	private	key	over	the	attested	credential	public	key	and	a			attestation	private	key	over	the	attested	credential	public	key	and	a
			challenge,	as	well	as	a	certificate	or	similar	information	providing			challenge,	as	well	as	a	certificate	or	similar	information	providing
			provenance	information	for	the	attestation	public	key,	enabling	a	trust			provenance	information	for	the	attestation	public	key,	enabling	a	trust

/Users/jehodges/Documents/work/standards/W3C/webauthn/index-vgb-u2f-attestation-dc90eab.txt,	Top	line:	1550

							user	has	consented	to	a	specific	transaction.	Thus,	an	assertion							user	has	consented	to	a	specific	transaction.	Thus,	an	assertion
							signature	asserts	the	identity	of	the	requester,	and	provides							signature	asserts	the	identity	of	the	requester,	and	provides
							additional	information	that	might	be	useful	to	the	caller,	such	as							additional	information	that	might	be	useful	to	the	caller,	such	as
							the	means	by	which	user	consent	was	provided,	and	the	prompt	that							the	means	by	which	user	consent	was	provided,	and	the	prompt	that
							was	shown	to	the	user	by	the	authenticator.							was	shown	to	the	user	by	the	authenticator.

			Both	types	of	signature	must	assert	the	integrity	of	both	the	client			Both	types	of	signature	must	assert	the	integrity	of	both	the	client
			data	and	the	authenticator	data.	Thus,	in	both	cases	the	authenticator			data	and	the	authenticator	data.	Thus,	in	both	cases	the	authenticator
			computes	a	signature	over	a	combination	of	the	clientDataHash	and	the			computes	a	signature	over	a	combination	of	the	clientDataHash	and	the
			authenticatorData.			authenticatorData.

			To	generate	either	type	of	signature,	the	authenticator	must	first			To	generate	either	type	of	signature,	the	authenticator	must	first
			select	an	appropriate	private	key	for	the	signature.	Then,	the			select	an	appropriate	private	key	for	the	signature.	Then,	the
			authenticator	concatenates	the	authenticatorData	and	clientDataHash,			authenticator	concatenates	the	authenticatorData	and	clientDataHash,
			and	signs	the	result	using	the	selected	private	key	as	shown	in	the			and	signs	the	result	using	the	selected	private	key	as	shown	in	the
			figure	below.			figure	below.
			[fido-signature-formats-figure2.svg]	Generating	a	signature	on	the			[fido-signature-formats-figure2.svg]	Generating	a	signature	on	the
			authenticator.			authenticator.

			A	simple,	undelimited	concatenation	is	safe	to	use	here	because	the			A	simple,	undelimited	concatenation	is	safe	to	use	here	because	the
			authenticatorData	describes	its	own	length.	The	clientDataHash	(which			authenticatorData	describes	its	own	length.	The	clientDataHash	(which
			potentially	has	a	variable	length)	is	always	the	last	element.			potentially	has	a	variable	length)	is	always	the	last	element.

				5.2.4.	Verifying	a	signature				5.2.4.	Verifying	a	signature

			This	section	specifies	the	algorithm	for	verifying	any	signature			This	section	specifies	the	algorithm	for	verifying	any	signature
			generated	using	the	method	in	5.2.3	Generating	a	signature.			generated	using	the	method	in	5.2.3	Generating	a	signature.

			To	verify	a	signature	S	given	a	claimed	clientDataJSON	C	and	a	claimed			To	verify	a	signature	S	given	a	claimed	clientDataJSON	C	and	a	claimed
			authenticatorData	data	using	a	given	public	key,	the	Relying	Party			authenticatorData	data	using	a	given	public	key,	the	Relying	Party
			shall:			shall:
				1.	Perform	JSON	decoding	on	C	to	extract	the	ClientData	used	for	the				1.	Perform	JSON	decoding	on	C	to	extract	the	ClientData	used	for	the
							signature.							signature.
				2.	Verify	that	the	challenge	in	the	ClientData	matches	the	challenge				2.	Verify	that	the	challenge	in	the	ClientData	matches	the	challenge
							that	was	sent	to	the	authenticator.							that	was	sent	to	the	authenticator.
				3.	Verify	that	the	origin	in	the	ClientData	matches	the	Relying				3.	Verify	that	the	origin	in	the	ClientData	matches	the	Relying
							Party's	origin.							Party's	origin.
				4.	Verify	that	the	tokenBinding	(if	present)	in	the	ClientData	matches				4.	Verify	that	the	tokenBinding	(if	present)	in	the	ClientData	matches
							the	token	binding	ID	for	the	TLS	connection	over	which	the							the	token	binding	ID	for	the	TLS	connection	over	which	the
							signature	was	obtained.							signature	was	obtained.
				5.	Verify	that	the	extensions	in	the	ClientData	is	a	proper	subset	of				5.	Verify	that	the	extensions	in	the	ClientData	is	a	proper	subset	of
							the	extensions	requested	by	the	RP.							the	extensions	requested	by	the	RP.
				6.	Verify	that	the	RP	ID	hash	in	data	is	indeed	the	SHA-256	hash	of				6.	Verify	that	the	RP	ID	hash	in	data	is	indeed	the	SHA-256	hash	of
							the	RP	ID	expected	by	the	RP.							the	RP	ID	expected	by	the	RP.
				7.	Compute	the	clientDataHash	over	C	using	the	hashAlg	algorithm	found				7.	Compute	the	clientDataHash	over	C	using	the	hashAlg	algorithm	found
							in	the	ClientData	structure.							in	the	ClientData	structure.
				8.	Use	the	given	public	key	to	verify	that	S	is	a	valid	signature	over				8.	Use	the	given	public	key	to	verify	that	S	is	a	valid	signature	over
							the	binary	concatenation	of	data	and	the	clientDataHash	computed							the	binary	concatenation	of	data	and	the	clientDataHash	computed
							above.							above.

			If	all	the	above	steps	succeed,	then	the	signature	is	valid,	otherwise			If	all	the	above	steps	succeed,	then	the	signature	is	valid,	otherwise
			it	is	invalid.			it	is	invalid.

		5.3.	Credential	Attestation		5.3.	Credential	Attestation

			Authenticators	must	also	provide	some	form	of	attestation.	The	basic			Authenticators	must	also	provide	some	form	of	attestation.	The	basic
			requirement	is	that	the	authenticator	can	produce,	for	each	credential			requirement	is	that	the	authenticator	can	produce,	for	each	credential
			public	key,	attestation	information	that	can	be	verified	by	a	Relying			public	key,	attestation	information	that	can	be	verified	by	a	Relying
			Party.	Typically,	this	information	contains	a	signature	by	an			Party.	Typically,	this	information	contains	a	signature	by	an
			attestation	private	key	over	the	attested	credential	public	key	and	a			attestation	private	key	over	the	attested	credential	public	key	and	a
			challenge,	as	well	as	a	certificate	or	similar	information	providing			challenge,	as	well	as	a	certificate	or	similar	information	providing
			provenance	information	for	the	attestation	public	key,	enabling	a	trust			provenance	information	for	the	attestation	public	key,	enabling	a	trust

26/72



/Users/jehodges/Documents/work/standards/W3C/webauthn/index-vgb-u2f-attestation-0d0fcea.txt,	Top	line:	1612

			decision	to	be	made.	However,	if	an	attestation	key	pair	is	not			decision	to	be	made.	However,	if	an	attestation	key	pair	is	not
			available,	then	the	authenticator	MUST	perform	self	attestation	of	the			available,	then	the	authenticator	MUST	perform	self	attestation	of	the
			credential	public	key	with	the	corresponding	credential	private	key.			credential	public	key	with	the	corresponding	credential	private	key.
			All	this	information	is	returned	by	the	authenticator	any	time	a	new			All	this	information	is	returned	by	the	authenticator	any	time	a	new
			credential	is	generated,	in	the	form	of	an	attestation	object.			credential	is	generated,	in	the	form	of	an	attestation	object.

			An	important	component	of	the	attestation	object	is	the	credential			An	important	component	of	the	attestation	object	is	the	credential
			attestation	statement.	This	is	a	specific	type	of	signed	data	object,			attestation	statement.	This	is	a	specific	type	of	signed	data	object,
			containing	statements	about	a	credential	itself	and	the	authenticator			containing	statements	about	a	credential	itself	and	the	authenticator
			that	created	it.	It	contains	an	attestation	signature	created	using	the			that	created	it.	It	contains	an	attestation	signature	created	using	the
			key	of	the	attesting	authority	(except	for	the	case	of	self			key	of	the	attesting	authority	(except	for	the	case	of	self
			attestation,	when	it	is	created	using	the	private	key	associated	with			attestation,	when	it	is	created	using	the	private	key	associated	with
			the	credential).	In	order	to	correctly	interpret	an	attestation			the	credential).	In	order	to	correctly	interpret	an	attestation
			statement,	a	Relying	Party	needs	to	understand	two	aspects	of	the			statement,	a	Relying	Party	needs	to	understand	two	aspects	of	the
			attestation:			attestation:
				1.	The	attestation	statement	format	is	the	manner	in	which	the				1.	The	attestation	statement	format	is	the	manner	in	which	the
							signature	is	represented	and	the	various	contextual	bindings	are							signature	is	represented	and	the	various	contextual	bindings	are
							incorporated	into	the	attestation	statement	by	the	authenticator.							incorporated	into	the	attestation	statement	by	the	authenticator.
							In	other	words,	this	defines	the	syntax	of	the	statement.	Various							In	other	words,	this	defines	the	syntax	of	the	statement.	Various
							existing	devices	and	platforms	(such	as	TPMs	and	the	Android	OS)							existing	devices	and	platforms	(such	as	TPMs	and	the	Android	OS)
							have	previously	defined	attestation	statement	formats.	This							have	previously	defined	attestation	statement	formats.	This
							specification	supports	a	variety	of	such	formats	in	an	extensible							specification	supports	a	variety	of	such	formats	in	an	extensible
							way,	as	defined	in	5.3.1	Attestation	Statement	Formats.							way,	as	defined	in	5.3.1	Attestation	Statement	Formats.
				2.	The	attestation	type	defines	the	semantics	of	the	attestation				2.	The	attestation	type	defines	the	semantics	of	the	attestation
							statement	and	its	underlying	trust	model.	It	defines	how	a	Relying							statement	and	its	underlying	trust	model.	It	defines	how	a	Relying
							Party	establishes	trust	in	a	particular	attestation	statement,							Party	establishes	trust	in	a	particular	attestation	statement,
							after	verifying	that	it	is	cryptographically	valid.							after	verifying	that	it	is	cryptographically	valid.

			In	general,	there	is	no	simple	mapping	between	attestation	statement			In	general,	there	is	no	simple	mapping	between	attestation	statement
			formats	and	attestation	types.	For	example	the	"packed"	attestation			formats	and	attestation	types.	For	example	the	"packed"	attestation
			statement	format	defined	in	7.2	Packed	Attestation	Statement	Format			statement	format	defined	in	7.2	Packed	Attestation	Statement	Format
			can	be	used	in	conjunction	with	all	attestation	types,	while	other			can	be	used	in	conjunction	with	all	attestation	types,	while	other
			formats	and	types	have	more	limited	applicability.			formats	and	types	have	more	limited	applicability.

			The	privacy,	security	and	operational	characteristics	of	attestation			The	privacy,	security	and	operational	characteristics	of	attestation
			depend	on:			depend	on:
					*	The	attestation	type,	which	determines	the	trust	model,					*	The	attestation	type,	which	determines	the	trust	model,
					*	The	attestation	statement	format,	which	may	constrain	the	strength					*	The	attestation	statement	format,	which	may	constrain	the	strength
							of	the	attestation	by	limiting	what	can	be	expressed	in	an							of	the	attestation	by	limiting	what	can	be	expressed	in	an
							attestation	statement,	and							attestation	statement,	and
					*	The	characteristics	of	the	individual	authenticator,	such	as	its					*	The	characteristics	of	the	individual	authenticator,	such	as	its
							construction,	whether	part	or	all	of	it	runs	in	a	secure	operating							construction,	whether	part	or	all	of	it	runs	in	a	secure	operating
							environment,	and	so	on.							environment,	and	so	on.

			It	is	expected	that	most	authenticators	will	support	a	small	number	of			It	is	expected	that	most	authenticators	will	support	a	small	number	of
			attestation	types	and	attestation	statement	formats,	while	Relying			attestation	types	and	attestation	statement	formats,	while	Relying
			Parties	will	decide	what	attestation	types	are	acceptable	to	them	by			Parties	will	decide	what	attestation	types	are	acceptable	to	them	by
			policy.	Relying	Parties	will	also	need	to	understand	the			policy.	Relying	Parties	will	also	need	to	understand	the
			characteristics	of	the	authenticators	that	they	trust,	based	on			characteristics	of	the	authenticators	that	they	trust,	based	on
			information	they	have	about	these	authenticators.	For	example,	the	FIDO			information	they	have	about	these	authenticators.	For	example,	the	FIDO
			Metadata	Service	[FIDOMetadataService]	provides	one	way	to	access	such			Metadata	Service	[FIDOMetadataService]	provides	one	way	to	access	such
			information.			information.

				5.3.1.	Attestation	Statement	Formats				5.3.1.	Attestation	Statement	Formats

			As	described	above,	an	attestation	statement	format	is	a	data	format			As	described	above,	an	attestation	statement	format	is	a	data	format
			which	represents	a	cryptographic	signature	by	an	authenticator	over	a			which	represents	a	cryptographic	signature	by	an	authenticator	over	a
			set	of	contextual	bindings.	Each	attestation	statement	format	is			set	of	contextual	bindings.	Each	attestation	statement	format	is
			defined	by	the	following	attributes:			defined	by	the	following	attributes:
					*	Its	attestation	format	identifier.					*	Its	attestation	format	identifier.
					*	The	set	of	attestation	types	supported	by	the	format.					*	The	set	of	attestation	types	supported	by	the	format.
					*	The	syntax	of	an	attestation	statement	produced	in	this	format.					*	The	syntax	of	an	attestation	statement	produced	in	this	format.

/Users/jehodges/Documents/work/standards/W3C/webauthn/index-vgb-u2f-attestation-dc90eab.txt,	Top	line:	1612

			decision	to	be	made.	However,	if	an	attestation	key	pair	is	not			decision	to	be	made.	However,	if	an	attestation	key	pair	is	not
			available,	then	the	authenticator	MUST	perform	self	attestation	of	the			available,	then	the	authenticator	MUST	perform	self	attestation	of	the
			credential	public	key	with	the	corresponding	credential	private	key.			credential	public	key	with	the	corresponding	credential	private	key.
			All	this	information	is	returned	by	the	authenticator	any	time	a	new			All	this	information	is	returned	by	the	authenticator	any	time	a	new
			credential	is	generated,	in	the	form	of	an	attestation	object.			credential	is	generated,	in	the	form	of	an	attestation	object.

			An	important	component	of	the	attestation	object	is	the	credential			An	important	component	of	the	attestation	object	is	the	credential
			attestation	statement.	This	is	a	specific	type	of	signed	data	object,			attestation	statement.	This	is	a	specific	type	of	signed	data	object,
			containing	statements	about	a	credential	itself	and	the	authenticator			containing	statements	about	a	credential	itself	and	the	authenticator
			that	created	it.	It	contains	an	attestation	signature	created	using	the			that	created	it.	It	contains	an	attestation	signature	created	using	the
			key	of	the	attesting	authority	(except	for	the	case	of	self			key	of	the	attesting	authority	(except	for	the	case	of	self
			attestation,	when	it	is	created	using	the	private	key	associated	with			attestation,	when	it	is	created	using	the	private	key	associated	with
			the	credential).	In	order	to	correctly	interpret	an	attestation			the	credential).	In	order	to	correctly	interpret	an	attestation
			statement,	a	Relying	Party	needs	to	understand	two	aspects	of	the			statement,	a	Relying	Party	needs	to	understand	two	aspects	of	the
			attestation:			attestation:
				1.	The	attestation	statement	format	is	the	manner	in	which	the				1.	The	attestation	statement	format	is	the	manner	in	which	the
							signature	is	represented	and	the	various	contextual	bindings	are							signature	is	represented	and	the	various	contextual	bindings	are
							incorporated	into	the	attestation	statement	by	the	authenticator.							incorporated	into	the	attestation	statement	by	the	authenticator.
							In	other	words,	this	defines	the	syntax	of	the	statement.	Various							In	other	words,	this	defines	the	syntax	of	the	statement.	Various
							existing	devices	and	platforms	(such	as	TPMs	and	the	Android	OS)							existing	devices	and	platforms	(such	as	TPMs	and	the	Android	OS)
							have	previously	defined	attestation	statement	formats.	This							have	previously	defined	attestation	statement	formats.	This
							specification	supports	a	variety	of	such	formats	in	an	extensible							specification	supports	a	variety	of	such	formats	in	an	extensible
							way,	as	defined	in	5.3.1	Attestation	Statement	Formats.							way,	as	defined	in	5.3.1	Attestation	Statement	Formats.
				2.	The	attestation	type	defines	the	semantics	of	the	attestation				2.	The	attestation	type	defines	the	semantics	of	the	attestation
							statement	and	its	underlying	trust	model.	It	defines	how	a	Relying							statement	and	its	underlying	trust	model.	It	defines	how	a	Relying
							Party	establishes	trust	in	a	particular	attestation	statement,							Party	establishes	trust	in	a	particular	attestation	statement,
							after	verifying	that	it	is	cryptographically	valid.							after	verifying	that	it	is	cryptographically	valid.

			In	general,	there	is	no	simple	mapping	between	attestation	statement			In	general,	there	is	no	simple	mapping	between	attestation	statement
			formats	and	attestation	types.	For	example	the	"packed"	attestation			formats	and	attestation	types.	For	example	the	"packed"	attestation
			statement	format	defined	in	7.2	Packed	Attestation	Statement	Format			statement	format	defined	in	7.2	Packed	Attestation	Statement	Format
			can	be	used	in	conjunction	with	all	attestation	types,	while	other			can	be	used	in	conjunction	with	all	attestation	types,	while	other
			formats	and	types	have	more	limited	applicability.			formats	and	types	have	more	limited	applicability.

			The	privacy,	security	and	operational	characteristics	of	attestation			The	privacy,	security	and	operational	characteristics	of	attestation
			depend	on:			depend	on:
					*	The	attestation	type,	which	determines	the	trust	model,					*	The	attestation	type,	which	determines	the	trust	model,
					*	The	attestation	statement	format,	which	may	constrain	the	strength					*	The	attestation	statement	format,	which	may	constrain	the	strength
							of	the	attestation	by	limiting	what	can	be	expressed	in	an							of	the	attestation	by	limiting	what	can	be	expressed	in	an
							attestation	statement,	and							attestation	statement,	and
					*	The	characteristics	of	the	individual	authenticator,	such	as	its					*	The	characteristics	of	the	individual	authenticator,	such	as	its
							construction,	whether	part	or	all	of	it	runs	in	a	secure	operating							construction,	whether	part	or	all	of	it	runs	in	a	secure	operating
							environment,	and	so	on.							environment,	and	so	on.

			It	is	expected	that	most	authenticators	will	support	a	small	number	of			It	is	expected	that	most	authenticators	will	support	a	small	number	of
			attestation	types	and	attestation	statement	formats,	while	Relying			attestation	types	and	attestation	statement	formats,	while	Relying
			Parties	will	decide	what	attestation	types	are	acceptable	to	them	by			Parties	will	decide	what	attestation	types	are	acceptable	to	them	by
			policy.	Relying	Parties	will	also	need	to	understand	the			policy.	Relying	Parties	will	also	need	to	understand	the
			characteristics	of	the	authenticators	that	they	trust,	based	on			characteristics	of	the	authenticators	that	they	trust,	based	on
			information	they	have	about	these	authenticators.	For	example,	the	FIDO			information	they	have	about	these	authenticators.	For	example,	the	FIDO
			Metadata	Service	[FIDOMetadataService]	provides	one	way	to	access	such			Metadata	Service	[FIDOMetadataService]	provides	one	way	to	access	such
			information.			information.

				5.3.1.	Attestation	Statement	Formats				5.3.1.	Attestation	Statement	Formats

			As	described	above,	an	attestation	statement	format	is	a	data	format			As	described	above,	an	attestation	statement	format	is	a	data	format
			which	represents	a	cryptographic	signature	by	an	authenticator	over	a			which	represents	a	cryptographic	signature	by	an	authenticator	over	a
			set	of	contextual	bindings.	Each	attestation	statement	format	is			set	of	contextual	bindings.	Each	attestation	statement	format	is
			defined	by	the	following	attributes:			defined	by	the	following	attributes:
					*	Its	attestation	format	identifier.					*	Its	attestation	format	identifier.
					*	The	set	of	attestation	types	supported	by	the	format.					*	The	set	of	attestation	types	supported	by	the	format.
					*	The	syntax	of	an	attestation	statement	produced	in	this	format.					*	The	syntax	of	an	attestation	statement	produced	in	this	format.

27/72



/Users/jehodges/Documents/work/standards/W3C/webauthn/index-vgb-u2f-attestation-0d0fcea.txt,	Top	line:	1674

					*	The	procedure	for	computing	an	attestation	statement	in	this	format					*	The	procedure	for	computing	an	attestation	statement	in	this	format
							given	the	credential	to	be	attested,	the	authenticatorData	for	the							given	the	credential	to	be	attested,	the	authenticatorData	for	the
							attestation,	and	a	clientDataHash.							attestation,	and	a	clientDataHash.
					*	The	procedure	for	verifying	an	attestation	statement,	which	takes					*	The	procedure	for	verifying	an	attestation	statement,	which	takes
							as	inputs	the	authenticatorData	claimed	to	have	been	used	for	the							as	inputs	the	authenticatorData	claimed	to	have	been	used	for	the
							attestation	and	the	clientDataHash	of	the	client's	contextual							attestation	and	the	clientDataHash	of	the	client's	contextual
							bindings,	and	returns	either:							bindings,	and	returns	either:
										+	An	error	indicating	that	the	attestation	is	invalid,	or										+	An	error	indicating	that	the	attestation	is	invalid,	or
										+	The	attestation	type,	and	the	trust	path	of	the	attestation.										+	The	attestation	type,	and	the	trust	path	of	the	attestation.
												This	trust	path	is	either	empty	(in	case	of	self-attestation),												This	trust	path	is	either	empty	(in	case	of	self-attestation),
												a	DAA	root	key	(in	the	case	of	Direct	Anonymous	Attestation),												a	DAA	root	key	(in	the	case	of	Direct	Anonymous	Attestation),
												or	a	set	of	X.509	certificates.												or	a	set	of	X.509	certificates.

			The	initial	list	of	supported	attestation	statement	formats	is	in	7			The	initial	list	of	supported	attestation	statement	formats	is	in	7
			Defined	Attestation	Statement	Formats.			Defined	Attestation	Statement	Formats.

				5.3.2.	Attestation	Types				5.3.2.	Attestation	Types

			WebAuthn	supports	multiple	attestation	types:			WebAuthn	supports	multiple	attestation	types:

			Basic	Attestation			Basic	Attestation

										In	the	case	of	basic	attestation	[UAFProtocol],	the										In	the	case	of	basic	attestation	[UAFProtocol],	the
										authenticator's	attestation	key	pair	is	specific	to	an										authenticator's	attestation	key	pair	is	specific	to	an
										authenticator	model.	Thus,	authenticators	of	the	same	model										authenticator	model.	Thus,	authenticators	of	the	same	model
										often	share	the	same	attestation	key	pair.	See	5.3.4.1	Privacy										often	share	the	same	attestation	key	pair.	See	5.3.4.1	Privacy
										for	futher	information.										for	futher	information.

			Self	Attestation			Self	Attestation

										In	the	case	of	self	attestation,	also	known	as	surrogate	basic										In	the	case	of	self	attestation,	also	known	as	surrogate	basic
										attestation	[UAFProtocol],	the	Authenticator	doesn't	have	any										attestation	[UAFProtocol],	the	Authenticator	doesn't	have	any
										specific	attestation	key.	Instead	it	uses	the	authentication	key										specific	attestation	key.	Instead	it	uses	the	authentication	key
										itself	to	create	the	attestation	signature.	Authenticators										itself	to	create	the	attestation	signature.	Authenticators
										without	meaningful	protection	measures	for	an	attestation										without	meaningful	protection	measures	for	an	attestation
										private	key	typically	use	this	attestation	type.										private	key	typically	use	this	attestation	type.

			Privacy	CA			Privacy	CA

										In	this	case,	the	Authenticator	owns	an	authenticator-specific										In	this	case,	the	Authenticator	owns	an	authenticator-specific
										(endorsement)	key.	This	key	is	used	to	securely	communicate	with										(endorsement)	key.	This	key	is	used	to	securely	communicate	with
										a	trusted	third	party,	the	Privacy	CA.	The	Authenticator	can										a	trusted	third	party,	the	Privacy	CA.	The	Authenticator	can
										generate	multiple	attestation	key	pairs	and	asks	the	Privacy	CA										generate	multiple	attestation	key	pairs	and	asks	the	Privacy	CA
										to	issue	an	attestation	certificate	for	it.	Using	this	approach,										to	issue	an	attestation	certificate	for	it.	Using	this	approach,
										the	Authenticator	can	limit	the	exposure	of	the	endorsement	key										the	Authenticator	can	limit	the	exposure	of	the	endorsement	key
										(which	is	a	global	correlation	handle)	to	Privacy	CA(s).										(which	is	a	global	correlation	handle)	to	Privacy	CA(s).
										Attestation	keys	can	be	requested	for	each	scoped	credential										Attestation	keys	can	be	requested	for	each	scoped	credential
										individually.										individually.

										Note:	This	concept	typically	leads	to	multiple	attestation										Note:	This	concept	typically	leads	to	multiple	attestation
										certificates.	The	attestation	certificate	requested	most										certificates.	The	attestation	certificate	requested	most
										recently	is	called	"active".										recently	is	called	"active".

			Direct	Anonymous	Attestation	(DAA)			Direct	Anonymous	Attestation	(DAA)

										In	this	case,	the	Authenticator	receives	DAA	credentials	from	a										In	this	case,	the	Authenticator	receives	DAA	credentials	from	a
										single	DAA-Issuer.	These	DAA	credentials	are	used	along	with										single	DAA-Issuer.	These	DAA	credentials	are	used	along	with
										blinding	to	sign	the	attestation	data.	The	concept	of	blinding										blinding	to	sign	the	attestation	data.	The	concept	of	blinding
										avoids	the	DAA	credentials	being	misused	as	global	correlation										avoids	the	DAA	credentials	being	misused	as	global	correlation
										handle.	WebAuthn	supports	DAA	using	elliptic	curve	cryptography										handle.	WebAuthn	supports	DAA	using	elliptic	curve	cryptography
										and	bilinear	pairings,	called	ECDAA	(see	[FIDOEcdaaAlgorithm])										and	bilinear	pairings,	called	ECDAA	(see	[FIDOEcdaaAlgorithm])
										in	this	specification.										in	this	specification.

/Users/jehodges/Documents/work/standards/W3C/webauthn/index-vgb-u2f-attestation-dc90eab.txt,	Top	line:	1674

					*	The	procedure	for	computing	an	attestation	statement	in	this	format					*	The	procedure	for	computing	an	attestation	statement	in	this	format
							given	the	credential	to	be	attested,	the	authenticatorData	for	the							given	the	credential	to	be	attested,	the	authenticatorData	for	the
							attestation,	and	a	clientDataHash.							attestation,	and	a	clientDataHash.
					*	The	procedure	for	verifying	an	attestation	statement,	which	takes					*	The	procedure	for	verifying	an	attestation	statement,	which	takes
							as	inputs	the	authenticatorData	claimed	to	have	been	used	for	the							as	inputs	the	authenticatorData	claimed	to	have	been	used	for	the
							attestation	and	the	clientDataHash	of	the	client's	contextual							attestation	and	the	clientDataHash	of	the	client's	contextual
							bindings,	and	returns	either:							bindings,	and	returns	either:
										+	An	error	indicating	that	the	attestation	is	invalid,	or										+	An	error	indicating	that	the	attestation	is	invalid,	or
										+	The	attestation	type,	and	the	trust	path	of	the	attestation.										+	The	attestation	type,	and	the	trust	path	of	the	attestation.
												This	trust	path	is	either	empty	(in	case	of	self-attestation),												This	trust	path	is	either	empty	(in	case	of	self-attestation),
												a	DAA	root	key	(in	the	case	of	Direct	Anonymous	Attestation),												a	DAA	root	key	(in	the	case	of	Direct	Anonymous	Attestation),
												or	a	set	of	X.509	certificates.												or	a	set	of	X.509	certificates.

			The	initial	list	of	supported	attestation	statement	formats	is	in	7			The	initial	list	of	supported	attestation	statement	formats	is	in	7
			Defined	Attestation	Statement	Formats.			Defined	Attestation	Statement	Formats.

				5.3.2.	Attestation	Types				5.3.2.	Attestation	Types

			WebAuthn	supports	multiple	attestation	types:			WebAuthn	supports	multiple	attestation	types:

			Basic	Attestation			Basic	Attestation

										In	the	case	of	basic	attestation	[UAFProtocol],	the										In	the	case	of	basic	attestation	[UAFProtocol],	the
										authenticator's	attestation	key	pair	is	specific	to	an										authenticator's	attestation	key	pair	is	specific	to	an
										authenticator	model.	Thus,	authenticators	of	the	same	model										authenticator	model.	Thus,	authenticators	of	the	same	model
										often	share	the	same	attestation	key	pair.	See	5.3.4.1	Privacy										often	share	the	same	attestation	key	pair.	See	5.3.4.1	Privacy
										for	futher	information.										for	futher	information.

			Self	Attestation			Self	Attestation

										In	the	case	of	self	attestation,	also	known	as	surrogate	basic										In	the	case	of	self	attestation,	also	known	as	surrogate	basic
										attestation	[UAFProtocol],	the	Authenticator	doesn't	have	any										attestation	[UAFProtocol],	the	Authenticator	doesn't	have	any
										specific	attestation	key.	Instead	it	uses	the	authentication	key										specific	attestation	key.	Instead	it	uses	the	authentication	key
										itself	to	create	the	attestation	signature.	Authenticators										itself	to	create	the	attestation	signature.	Authenticators
										without	meaningful	protection	measures	for	an	attestation										without	meaningful	protection	measures	for	an	attestation
										private	key	typically	use	this	attestation	type.										private	key	typically	use	this	attestation	type.

			Privacy	CA			Privacy	CA

										In	this	case,	the	Authenticator	owns	an	authenticator-specific										In	this	case,	the	Authenticator	owns	an	authenticator-specific
										(endorsement)	key.	This	key	is	used	to	securely	communicate	with										(endorsement)	key.	This	key	is	used	to	securely	communicate	with
										a	trusted	third	party,	the	Privacy	CA.	The	Authenticator	can										a	trusted	third	party,	the	Privacy	CA.	The	Authenticator	can
										generate	multiple	attestation	key	pairs	and	asks	the	Privacy	CA										generate	multiple	attestation	key	pairs	and	asks	the	Privacy	CA
										to	issue	an	attestation	certificate	for	it.	Using	this	approach,										to	issue	an	attestation	certificate	for	it.	Using	this	approach,
										the	Authenticator	can	limit	the	exposure	of	the	endorsement	key										the	Authenticator	can	limit	the	exposure	of	the	endorsement	key
										(which	is	a	global	correlation	handle)	to	Privacy	CA(s).										(which	is	a	global	correlation	handle)	to	Privacy	CA(s).
										Attestation	keys	can	be	requested	for	each	scoped	credential										Attestation	keys	can	be	requested	for	each	scoped	credential
										individually.										individually.

										Note:	This	concept	typically	leads	to	multiple	attestation										Note:	This	concept	typically	leads	to	multiple	attestation
										certificates.	The	attestation	certificate	requested	most										certificates.	The	attestation	certificate	requested	most
										recently	is	called	"active".										recently	is	called	"active".

			Direct	Anonymous	Attestation	(DAA)			Direct	Anonymous	Attestation	(DAA)

										In	this	case,	the	Authenticator	receives	DAA	credentials	from	a										In	this	case,	the	Authenticator	receives	DAA	credentials	from	a
										single	DAA-Issuer.	These	DAA	credentials	are	used	along	with										single	DAA-Issuer.	These	DAA	credentials	are	used	along	with
										blinding	to	sign	the	attestation	data.	The	concept	of	blinding										blinding	to	sign	the	attestation	data.	The	concept	of	blinding
										avoids	the	DAA	credentials	being	misused	as	global	correlation										avoids	the	DAA	credentials	being	misused	as	global	correlation
										handle.	WebAuthn	supports	DAA	using	elliptic	curve	cryptography										handle.	WebAuthn	supports	DAA	using	elliptic	curve	cryptography
										and	bilinear	pairings,	called	ECDAA	(see	[FIDOEcdaaAlgorithm])										and	bilinear	pairings,	called	ECDAA	(see	[FIDOEcdaaAlgorithm])
										in	this	specification.										in	this	specification.

28/72



/Users/jehodges/Documents/work/standards/W3C/webauthn/index-vgb-u2f-attestation-0d0fcea.txt,	Top	line:	1736

				5.3.3.	Generating	an	Attestation	Object				5.3.3.	Generating	an	Attestation	Object

			This	section	specifies	the	algorithm	for	generating	an	attestation			This	section	specifies	the	algorithm	for	generating	an	attestation
			object	for	any	attestation	statement	format.			object	for	any	attestation	statement	format.

			In	order	to	construct	an	attestation	object	for	a	given	credential			In	order	to	construct	an	attestation	object	for	a	given	credential
			using	a	particular	attestation	statement	format,	the	authenticator	MUST			using	a	particular	attestation	statement	format,	the	authenticator	MUST
			first	generate	an	authenticatorData	structure,			first	generate	an	authenticatorData	structure,

			The	authenticator	MUST	then	concatenate	this	authenticatorData	and	the			The	authenticator	MUST	then	concatenate	this	authenticatorData	and	the			The	authenticator	MUST	then	concatenate	this	authenticatorData	and	the
			client-supplied	clientDataHash	as	specified	in	5.2.3	Generating	a			client-supplied	clientDataHash	as	specified	in	5.2.3	Generating	a
			signature	to	form	attToBeSigned.	It	must	then	run	the	signing	procedure			signature	to	form	attToBeSigned.	It	must	then	run	the	signing	procedure
			for	the	desired	attestation	statement	format	with	attToBeSigned	as			for	the	desired	attestation	statement	format	with	attToBeSigned	as
			input,	and	use	this	to	construct	an	attestation	statement	in	that			input,	and	use	this	to	construct	an	attestation	statement	in	that
			attestation	statement	format.			attestation	statement	format.

			Finally,	the	authenticator	MUST	construct	the	attestation	object	as	a			Finally,	the	authenticator	MUST	construct	the	attestation	object	as	a
			CBOR	map	comprising	the	following	fields:			CBOR	map	comprising	the	following	fields:

			format			format			format			format

										The	attestation	format	identifier	associated	with	the										The	attestation	format	identifier	associated	with	the
										attestation	statement.										attestation	statement.

			authenticatorData			authenticatorData			authenticatorData

										The	authenticator	data	used	to	generate	the	attestation										The	authenticator	data	used	to	generate	the	attestation
										statement.										statement.

			attestation			attestation			attestation

										The	attestation	statement	constructed	above.										The	attestation	statement	constructed	above.

				5.3.4.	Security	Considerations				5.3.4.	Security	Considerations

						5.3.4.1.	Privacy						5.3.4.1.	Privacy

			Attestation	keys	may	be	used	to	track	users	or	link	various	online			Attestation	keys	may	be	used	to	track	users	or	link	various	online
			identities	of	the	same	user	together.	This	may	be	mitigated	in	several			identities	of	the	same	user	together.	This	may	be	mitigated	in	several
			ways,	including:			ways,	including:
					*	A	WebAuthn	Authenticator	manufacturer	may	choose	to	ship	all	of					*	A	WebAuthn	Authenticator	manufacturer	may	choose	to	ship	all	of
							their	devices	with	the	same	(or	a	fixed	number	of)	attestation							their	devices	with	the	same	(or	a	fixed	number	of)	attestation
							key(s)	(called	Basic	Attestation).	This	will	anonymize	the	user	at							key(s)	(called	Basic	Attestation).	This	will	anonymize	the	user	at
							the	risk	of	not	being	able	to	revoke	a	particular	attestation	key							the	risk	of	not	being	able	to	revoke	a	particular	attestation	key
							should	its	WebAuthn	Authenticator	be	compromised.							should	its	WebAuthn	Authenticator	be	compromised.
					*	A	WebAuthn	Authenticator	may	be	capable	of	dynamically	generating					*	A	WebAuthn	Authenticator	may	be	capable	of	dynamically	generating
							different	attestation	keys	(and	requesting	related	certificates)							different	attestation	keys	(and	requesting	related	certificates)
							per	origin	(following	the	Privacy	CA	approach).	For	example,	a							per	origin	(following	the	Privacy	CA	approach).	For	example,	a
							WebAuthn	Authenticator	can	ship	with	a	master	attestation	key	(and							WebAuthn	Authenticator	can	ship	with	a	master	attestation	key	(and
							certificate),	and	combined	with	a	cloud	operated	privacy	CA,	can							certificate),	and	combined	with	a	cloud	operated	privacy	CA,	can
							dynamically	generate	per	origin	attestation	keys	and	attestation							dynamically	generate	per	origin	attestation	keys	and	attestation
							certificates.							certificates.
					*	A	WebAuthn	Authenticator	can	implement	direct	anonymous	attestation					*	A	WebAuthn	Authenticator	can	implement	direct	anonymous	attestation
							(see	[FIDOEcdaaAlgorithm]).	Using	this	scheme,	the	authenticator							(see	[FIDOEcdaaAlgorithm]).	Using	this	scheme,	the	authenticator
							generates	a	blinded	attestation	signature.	This	allows	the	Relying							generates	a	blinded	attestation	signature.	This	allows	the	Relying
							Party	to	verify	the	signature	using	the	DAA	root	key,	but	the							Party	to	verify	the	signature	using	the	DAA	root	key,	but	the
							attestation	signature	doesn't	serve	as	a	global	correlation	handle.							attestation	signature	doesn't	serve	as	a	global	correlation	handle.

						5.3.4.2.	Attestation	Certificate	and	Attestation	Certificate	CA	Compromise						5.3.4.2.	Attestation	Certificate	and	Attestation	Certificate	CA	Compromise

			When	an	intermediate	CA	or	a	root	CA	used	for	issuing	attestation			When	an	intermediate	CA	or	a	root	CA	used	for	issuing	attestation

/Users/jehodges/Documents/work/standards/W3C/webauthn/index-vgb-u2f-attestation-dc90eab.txt,	Top	line:	1736

				5.3.3.	Generating	an	Attestation	Object				5.3.3.	Generating	an	Attestation	Object

			This	section	specifies	the	algorithm	for	generating	an	attestation			This	section	specifies	the	algorithm	for	generating	an	attestation
			object	for	any	attestation	statement	format.			object	for	any	attestation	statement	format.

			In	order	to	construct	an	attestation	object	for	a	given	credential			In	order	to	construct	an	attestation	object	for	a	given	credential
			using	a	particular	attestation	statement	format,	the	authenticator	MUST			using	a	particular	attestation	statement	format,	the	authenticator	MUST
			first	generate	an	authenticatorData	structure,			first	generate	an	authenticatorData	structure,

			The	authenticator	MUST	then	run	the	signing	procedure	for	the	desired			The	authenticator	MUST	then	run	the	signing	procedure	for	the	desired			The	authenticator	MUST	then	run	the	signing	procedure	for	the	desired
			attestation	statement	format	with	this	authenticatorData	and	the			attestation	statement	format	with	this	authenticatorData	and	the
			client-supplied	clientDataHash	as	input,	and	use	this	to	construct	an			client-supplied	clientDataHash	as	input,	and	use	this	to	construct	an
			attestation	statement	in	that	attestation	statement	format.			attestation	statement	in	that	attestation	statement	format.

			Finally,	the	authenticator	MUST	construct	the	attestation	object	as	a			Finally,	the	authenticator	MUST	construct	the	attestation	object	as	a
			CBOR	map	comprising	the	following	fields:			CBOR	map	comprising	the	following	fields:

			fmt			fmt			fmt			fmt

										The	attestation	format	identifier	associated	with	the										The	attestation	format	identifier	associated	with	the
										attestation	statement.										attestation	statement.

			authData			authData			authData

										The	authenticator	data	used	to	generate	the	attestation										The	authenticator	data	used	to	generate	the	attestation
										statement.										statement.

			attStmt			attStmt			attStmt

										The	attestation	statement	constructed	above.										The	attestation	statement	constructed	above.

				5.3.4.	Security	Considerations				5.3.4.	Security	Considerations

						5.3.4.1.	Privacy						5.3.4.1.	Privacy

			Attestation	keys	may	be	used	to	track	users	or	link	various	online			Attestation	keys	may	be	used	to	track	users	or	link	various	online
			identities	of	the	same	user	together.	This	may	be	mitigated	in	several			identities	of	the	same	user	together.	This	may	be	mitigated	in	several
			ways,	including:			ways,	including:
					*	A	WebAuthn	Authenticator	manufacturer	may	choose	to	ship	all	of					*	A	WebAuthn	Authenticator	manufacturer	may	choose	to	ship	all	of
							their	devices	with	the	same	(or	a	fixed	number	of)	attestation							their	devices	with	the	same	(or	a	fixed	number	of)	attestation
							key(s)	(called	Basic	Attestation).	This	will	anonymize	the	user	at							key(s)	(called	Basic	Attestation).	This	will	anonymize	the	user	at
							the	risk	of	not	being	able	to	revoke	a	particular	attestation	key							the	risk	of	not	being	able	to	revoke	a	particular	attestation	key
							should	its	WebAuthn	Authenticator	be	compromised.							should	its	WebAuthn	Authenticator	be	compromised.
					*	A	WebAuthn	Authenticator	may	be	capable	of	dynamically	generating					*	A	WebAuthn	Authenticator	may	be	capable	of	dynamically	generating
							different	attestation	keys	(and	requesting	related	certificates)							different	attestation	keys	(and	requesting	related	certificates)
							per	origin	(following	the	Privacy	CA	approach).	For	example,	a							per	origin	(following	the	Privacy	CA	approach).	For	example,	a
							WebAuthn	Authenticator	can	ship	with	a	master	attestation	key	(and							WebAuthn	Authenticator	can	ship	with	a	master	attestation	key	(and
							certificate),	and	combined	with	a	cloud	operated	privacy	CA,	can							certificate),	and	combined	with	a	cloud	operated	privacy	CA,	can
							dynamically	generate	per	origin	attestation	keys	and	attestation							dynamically	generate	per	origin	attestation	keys	and	attestation
							certificates.							certificates.
					*	A	WebAuthn	Authenticator	can	implement	direct	anonymous	attestation					*	A	WebAuthn	Authenticator	can	implement	direct	anonymous	attestation
							(see	[FIDOEcdaaAlgorithm]).	Using	this	scheme,	the	authenticator							(see	[FIDOEcdaaAlgorithm]).	Using	this	scheme,	the	authenticator
							generates	a	blinded	attestation	signature.	This	allows	the	Relying							generates	a	blinded	attestation	signature.	This	allows	the	Relying
							Party	to	verify	the	signature	using	the	DAA	root	key,	but	the							Party	to	verify	the	signature	using	the	DAA	root	key,	but	the
							attestation	signature	doesn't	serve	as	a	global	correlation	handle.							attestation	signature	doesn't	serve	as	a	global	correlation	handle.

						5.3.4.2.	Attestation	Certificate	and	Attestation	Certificate	CA	Compromise						5.3.4.2.	Attestation	Certificate	and	Attestation	Certificate	CA	Compromise

			When	an	intermediate	CA	or	a	root	CA	used	for	issuing	attestation			When	an	intermediate	CA	or	a	root	CA	used	for	issuing	attestation
29/72



/Users/jehodges/Documents/work/standards/W3C/webauthn/index-vgb-u2f-attestation-0d0fcea.txt,	Top	line:	1798

			certificates	is	compromised,	WebAuthn	Authenticator	attestation	keys			certificates	is	compromised,	WebAuthn	Authenticator	attestation	keys
			are	still	safe	although	their	certificates	can	no	longer	be	trusted.	A			are	still	safe	although	their	certificates	can	no	longer	be	trusted.	A
			WebAuthn	Authenticator	manufacturer	that	has	recorded	the	public			WebAuthn	Authenticator	manufacturer	that	has	recorded	the	public
			attestation	keys	for	their	devices	can	issue	new	attestation			attestation	keys	for	their	devices	can	issue	new	attestation
			certificates	for	these	keys	from	a	new	intermediate	CA	or	from	a	new			certificates	for	these	keys	from	a	new	intermediate	CA	or	from	a	new
			root	CA.	If	the	root	CA	changes,	the	Relying	Parties	must	update	their			root	CA.	If	the	root	CA	changes,	the	Relying	Parties	must	update	their
			trusted	root	certificates	accordingly.			trusted	root	certificates	accordingly.

			A	WebAuthn	Authenticator	attestation	certificate	must	be	revoked	by	the			A	WebAuthn	Authenticator	attestation	certificate	must	be	revoked	by	the
			issuing	CA	if	its	key	has	been	compromised.	A	WebAuthn	Authenticator			issuing	CA	if	its	key	has	been	compromised.	A	WebAuthn	Authenticator
			manufacturer	may	need	to	ship	a	firmware	update	and	inject	new			manufacturer	may	need	to	ship	a	firmware	update	and	inject	new
			attestation	keys	and	certificates	into	already	manufactured	WebAuthn			attestation	keys	and	certificates	into	already	manufactured	WebAuthn
			Authenticators,	if	the	exposure	was	due	to	a	firmware	flaw.	(The			Authenticators,	if	the	exposure	was	due	to	a	firmware	flaw.	(The
			process	by	which	this	happens	is	out	of	scope	for	this	specification.)			process	by	which	this	happens	is	out	of	scope	for	this	specification.)
			If	the	WebAuthn	Authenticator	manufacturer	does	not	have	this			If	the	WebAuthn	Authenticator	manufacturer	does	not	have	this
			capability,	then	it	may	not	be	possible	for	Relying	Parties	to	trust			capability,	then	it	may	not	be	possible	for	Relying	Parties	to	trust
			any	further	attestation	statements	from	the	affected	WebAuthn			any	further	attestation	statements	from	the	affected	WebAuthn
			Authenticators.			Authenticators.

			If	attestation	certificate	validation	fails	due	to	a	revoked			If	attestation	certificate	validation	fails	due	to	a	revoked
			intermediate	attestation	CA	certificate,	and	the	Relying	Party's	policy			intermediate	attestation	CA	certificate,	and	the	Relying	Party's	policy
			requires	rejecting	the	registration/authentication	request	in	these			requires	rejecting	the	registration/authentication	request	in	these
			situations,	then	it	is	recommended	that	the	Relying	Party	also			situations,	then	it	is	recommended	that	the	Relying	Party	also
			un-registers	(or	marks	with	a	trust	level	equivalent	to	"self			un-registers	(or	marks	with	a	trust	level	equivalent	to	"self
			attestation")	scoped	credentials	that	were	registered	after	the	CA			attestation")	scoped	credentials	that	were	registered	after	the	CA
			compromise	date	using	an	attestation	certificate	chaining	up	to	the			compromise	date	using	an	attestation	certificate	chaining	up	to	the
			same	intermediate	CA.	It	is	thus	recommended	that	Relying	Parties			same	intermediate	CA.	It	is	thus	recommended	that	Relying	Parties
			remember	intermediate	attestation	CA	certificates	during	Authenticator			remember	intermediate	attestation	CA	certificates	during	Authenticator
			registration	in	order	to	un-register	related	Scoped	Credentials	if	the			registration	in	order	to	un-register	related	Scoped	Credentials	if	the
			registration	was	performed	after	revocation	of	such	certificates.			registration	was	performed	after	revocation	of	such	certificates.

			If	a	DAA	attestation	key	has	been	compromised,	it	can	be	added	to	the			If	a	DAA	attestation	key	has	been	compromised,	it	can	be	added	to	the
			RogueList	(i.e.,	the	list	of	revoked	authenticators)	maintained	by	the			RogueList	(i.e.,	the	list	of	revoked	authenticators)	maintained	by	the
			related	DAA-Issuer.	The	Relying	Party	should	verify	whether	an			related	DAA-Issuer.	The	Relying	Party	should	verify	whether	an
			authenticator	belongs	to	the	RogueList	when	performing	DAA-Verify.	For			authenticator	belongs	to	the	RogueList	when	performing	DAA-Verify.	For
			example,	the	FIDO	Metadata	Service	[FIDOMetadataService]	provides	one			example,	the	FIDO	Metadata	Service	[FIDOMetadataService]	provides	one
			way	to	access	such	information.			way	to	access	such	information.

						5.3.4.3.	Attestation	Certificate	Hierarchy						5.3.4.3.	Attestation	Certificate	Hierarchy

			A	3-tier	hierarchy	for	attestation	certificates	is	recommended	(i.e.,			A	3-tier	hierarchy	for	attestation	certificates	is	recommended	(i.e.,
			Attestation	Root,	Attestation	Issuing	CA,	Attestation	Certificate).	It			Attestation	Root,	Attestation	Issuing	CA,	Attestation	Certificate).	It
			is	also	recommended	that	for	each	WebAuthn	Authenticator	device	line			is	also	recommended	that	for	each	WebAuthn	Authenticator	device	line
			(i.e.,	model),	a	separate	issuing	CA	is	used	to	help	facilitate			(i.e.,	model),	a	separate	issuing	CA	is	used	to	help	facilitate
			isolating	problems	with	a	specific	version	of	a	device.			isolating	problems	with	a	specific	version	of	a	device.

			If	the	attestation	root	certificate	is	not	dedicated	to	a	single			If	the	attestation	root	certificate	is	not	dedicated	to	a	single
			WebAuthn	Authenticator	device	line	(i.e.,	AAGUID),	the	AAGUID	should	be			WebAuthn	Authenticator	device	line	(i.e.,	AAGUID),	the	AAGUID	should	be
			specified	in	the	attestation	certificate	itself,	so	that	it	can	be			specified	in	the	attestation	certificate	itself,	so	that	it	can	be
			verified	against	the	authenticatorData.			verified	against	the	authenticatorData.

6.	Relying	Party	Operations6.	Relying	Party	Operations

			Upon	successful	execution	of	a	makeCredential()	or	getAssertion()	call,			Upon	successful	execution	of	a	makeCredential()	or	getAssertion()	call,
			the	Relying	Party's	script	receives	a	ScopedCredentialInfo	or			the	Relying	Party's	script	receives	a	ScopedCredentialInfo	or
			AuthenticationAssertion	structure	respectively	from	the	client.	It	must			AuthenticationAssertion	structure	respectively	from	the	client.	It	must
			then	deliver	the	contents	of	this	structure	to	the	Relying	Party,	using			then	deliver	the	contents	of	this	structure	to	the	Relying	Party,	using
			methods	outside	the	scope	of	this	specification.	This	section	describes			methods	outside	the	scope	of	this	specification.	This	section	describes
			the	operations	that	the	Relying	Party	must	perform	upon	receipt	of			the	operations	that	the	Relying	Party	must	perform	upon	receipt	of
			these	structures.			these	structures.

		6.1.	Registering	a	new	credential		6.1.	Registering	a	new	credential

/Users/jehodges/Documents/work/standards/W3C/webauthn/index-vgb-u2f-attestation-dc90eab.txt,	Top	line:	1796

			certificates	is	compromised,	WebAuthn	Authenticator	attestation	keys			certificates	is	compromised,	WebAuthn	Authenticator	attestation	keys
			are	still	safe	although	their	certificates	can	no	longer	be	trusted.	A			are	still	safe	although	their	certificates	can	no	longer	be	trusted.	A
			WebAuthn	Authenticator	manufacturer	that	has	recorded	the	public			WebAuthn	Authenticator	manufacturer	that	has	recorded	the	public
			attestation	keys	for	their	devices	can	issue	new	attestation			attestation	keys	for	their	devices	can	issue	new	attestation
			certificates	for	these	keys	from	a	new	intermediate	CA	or	from	a	new			certificates	for	these	keys	from	a	new	intermediate	CA	or	from	a	new
			root	CA.	If	the	root	CA	changes,	the	Relying	Parties	must	update	their			root	CA.	If	the	root	CA	changes,	the	Relying	Parties	must	update	their
			trusted	root	certificates	accordingly.			trusted	root	certificates	accordingly.

			A	WebAuthn	Authenticator	attestation	certificate	must	be	revoked	by	the			A	WebAuthn	Authenticator	attestation	certificate	must	be	revoked	by	the
			issuing	CA	if	its	key	has	been	compromised.	A	WebAuthn	Authenticator			issuing	CA	if	its	key	has	been	compromised.	A	WebAuthn	Authenticator
			manufacturer	may	need	to	ship	a	firmware	update	and	inject	new			manufacturer	may	need	to	ship	a	firmware	update	and	inject	new
			attestation	keys	and	certificates	into	already	manufactured	WebAuthn			attestation	keys	and	certificates	into	already	manufactured	WebAuthn
			Authenticators,	if	the	exposure	was	due	to	a	firmware	flaw.	(The			Authenticators,	if	the	exposure	was	due	to	a	firmware	flaw.	(The
			process	by	which	this	happens	is	out	of	scope	for	this	specification.)			process	by	which	this	happens	is	out	of	scope	for	this	specification.)
			If	the	WebAuthn	Authenticator	manufacturer	does	not	have	this			If	the	WebAuthn	Authenticator	manufacturer	does	not	have	this
			capability,	then	it	may	not	be	possible	for	Relying	Parties	to	trust			capability,	then	it	may	not	be	possible	for	Relying	Parties	to	trust
			any	further	attestation	statements	from	the	affected	WebAuthn			any	further	attestation	statements	from	the	affected	WebAuthn
			Authenticators.			Authenticators.

			If	attestation	certificate	validation	fails	due	to	a	revoked			If	attestation	certificate	validation	fails	due	to	a	revoked
			intermediate	attestation	CA	certificate,	and	the	Relying	Party's	policy			intermediate	attestation	CA	certificate,	and	the	Relying	Party's	policy
			requires	rejecting	the	registration/authentication	request	in	these			requires	rejecting	the	registration/authentication	request	in	these
			situations,	then	it	is	recommended	that	the	Relying	Party	also			situations,	then	it	is	recommended	that	the	Relying	Party	also
			un-registers	(or	marks	with	a	trust	level	equivalent	to	"self			un-registers	(or	marks	with	a	trust	level	equivalent	to	"self
			attestation")	scoped	credentials	that	were	registered	after	the	CA			attestation")	scoped	credentials	that	were	registered	after	the	CA
			compromise	date	using	an	attestation	certificate	chaining	up	to	the			compromise	date	using	an	attestation	certificate	chaining	up	to	the
			same	intermediate	CA.	It	is	thus	recommended	that	Relying	Parties			same	intermediate	CA.	It	is	thus	recommended	that	Relying	Parties
			remember	intermediate	attestation	CA	certificates	during	Authenticator			remember	intermediate	attestation	CA	certificates	during	Authenticator
			registration	in	order	to	un-register	related	Scoped	Credentials	if	the			registration	in	order	to	un-register	related	Scoped	Credentials	if	the
			registration	was	performed	after	revocation	of	such	certificates.			registration	was	performed	after	revocation	of	such	certificates.

			If	a	DAA	attestation	key	has	been	compromised,	it	can	be	added	to	the			If	a	DAA	attestation	key	has	been	compromised,	it	can	be	added	to	the
			RogueList	(i.e.,	the	list	of	revoked	authenticators)	maintained	by	the			RogueList	(i.e.,	the	list	of	revoked	authenticators)	maintained	by	the
			related	DAA-Issuer.	The	Relying	Party	should	verify	whether	an			related	DAA-Issuer.	The	Relying	Party	should	verify	whether	an
			authenticator	belongs	to	the	RogueList	when	performing	DAA-Verify.	For			authenticator	belongs	to	the	RogueList	when	performing	DAA-Verify.	For
			example,	the	FIDO	Metadata	Service	[FIDOMetadataService]	provides	one			example,	the	FIDO	Metadata	Service	[FIDOMetadataService]	provides	one
			way	to	access	such	information.			way	to	access	such	information.

						5.3.4.3.	Attestation	Certificate	Hierarchy						5.3.4.3.	Attestation	Certificate	Hierarchy

			A	3-tier	hierarchy	for	attestation	certificates	is	recommended	(i.e.,			A	3-tier	hierarchy	for	attestation	certificates	is	recommended	(i.e.,
			Attestation	Root,	Attestation	Issuing	CA,	Attestation	Certificate).	It			Attestation	Root,	Attestation	Issuing	CA,	Attestation	Certificate).	It
			is	also	recommended	that	for	each	WebAuthn	Authenticator	device	line			is	also	recommended	that	for	each	WebAuthn	Authenticator	device	line
			(i.e.,	model),	a	separate	issuing	CA	is	used	to	help	facilitate			(i.e.,	model),	a	separate	issuing	CA	is	used	to	help	facilitate
			isolating	problems	with	a	specific	version	of	a	device.			isolating	problems	with	a	specific	version	of	a	device.

			If	the	attestation	root	certificate	is	not	dedicated	to	a	single			If	the	attestation	root	certificate	is	not	dedicated	to	a	single
			WebAuthn	Authenticator	device	line	(i.e.,	AAGUID),	the	AAGUID	should	be			WebAuthn	Authenticator	device	line	(i.e.,	AAGUID),	the	AAGUID	should	be
			specified	in	the	attestation	certificate	itself,	so	that	it	can	be			specified	in	the	attestation	certificate	itself,	so	that	it	can	be
			verified	against	the	authenticatorData.			verified	against	the	authenticatorData.

6.	Relying	Party	Operations6.	Relying	Party	Operations

			Upon	successful	execution	of	a	makeCredential()	or	getAssertion()	call,			Upon	successful	execution	of	a	makeCredential()	or	getAssertion()	call,
			the	Relying	Party's	script	receives	a	ScopedCredentialInfo	or			the	Relying	Party's	script	receives	a	ScopedCredentialInfo	or
			AuthenticationAssertion	structure	respectively	from	the	client.	It	must			AuthenticationAssertion	structure	respectively	from	the	client.	It	must
			then	deliver	the	contents	of	this	structure	to	the	Relying	Party,	using			then	deliver	the	contents	of	this	structure	to	the	Relying	Party,	using
			methods	outside	the	scope	of	this	specification.	This	section	describes			methods	outside	the	scope	of	this	specification.	This	section	describes
			the	operations	that	the	Relying	Party	must	perform	upon	receipt	of			the	operations	that	the	Relying	Party	must	perform	upon	receipt	of
			these	structures.			these	structures.

		6.1.	Registering	a	new	credential		6.1.	Registering	a	new	credential
30/72



/Users/jehodges/Documents/work/standards/W3C/webauthn/index-vgb-u2f-attestation-0d0fcea.txt,	Top	line:	1860

			When	requested	to	register	a	new	credential	with	a	ScopedCredentialInfo			When	requested	to	register	a	new	credential	with	a	ScopedCredentialInfo
			structure,	a	Relying	Party	must	proceed	as	follows:			structure,	a	Relying	Party	must	proceed	as	follows:
				1.	Perform	JSON	decoding	on	the	clientData	field	of	the				1.	Perform	JSON	decoding	on	the	clientData	field	of	the
							ScopedCredentialInfo	object	to	extract	the	ClientData	used	for	the							ScopedCredentialInfo	object	to	extract	the	ClientData	used	for	the
							credential's	attestation.							credential's	attestation.
				2.	Verify	that	the	challenge	in	the	ClientData	matches	the	challenge				2.	Verify	that	the	challenge	in	the	ClientData	matches	the	challenge
							that	was	sent	to	the	authenticator	in	the	makeCredential()	call.							that	was	sent	to	the	authenticator	in	the	makeCredential()	call.
				3.	Verify	that	the	origin	in	the	ClientData	matches	the	Relying				3.	Verify	that	the	origin	in	the	ClientData	matches	the	Relying
							Party's	origin.							Party's	origin.
				4.	Verify	that	the	tokenBinding	in	the	ClientData	matches	the	token				4.	Verify	that	the	tokenBinding	in	the	ClientData	matches	the	token
							binding	ID	for	the	TLS	connection	over	which	the	attestation	was							binding	ID	for	the	TLS	connection	over	which	the	attestation	was
							obtained.							obtained.
				5.	Verify	that	the	extensions	in	the	ClientData	is	a	proper	subset	of				5.	Verify	that	the	extensions	in	the	ClientData	is	a	proper	subset	of
							the	extensions	requested	by	the	RP.							the	extensions	requested	by	the	RP.
				6.	Compute	the	clientDataHash	over	clientData	using	the	hashAlg				6.	Compute	the	clientDataHash	over	clientData	using	the	hashAlg
							algorithm	found	in	the	ClientData	structure.							algorithm	found	in	the	ClientData	structure.
				7.	Perform	CBOR	decoding	on	the	attestationObject	field	of	the				7.	Perform	CBOR	decoding	on	the	attestationObject	field	of	the
							ScopedCredentialInfo	structure	to	obtain	the	attestation	statement							ScopedCredentialInfo	structure	to	obtain	the	attestation	statement
							format	fmt,	the	authenticator	data	data,	and	the	attestation							format	fmt,	the	authenticator	data	data,	and	the	attestation							format	fmt,	the	authenticator	data	data,	and	the	attestation							format	fmt,	the	authenticator	data	data,	and	the	attestation
							statement	stmt.							statement	stmt.							statement	stmt.							statement	stmt.
				8.	Verify	that	the	RP	ID	hash	in	data	is	indeed	the	SHA-256	hash	of				8.	Verify	that	the	RP	ID	hash	in	data	is	indeed	the	SHA-256	hash	of				8.	Verify	that	the	RP	ID	hash	in	data	is	indeed	the	SHA-256	hash	of				8.	Verify	that	the	RP	ID	hash	in	data	is	indeed	the	SHA-256	hash	of				8.	Verify	that	the	RP	ID	hash	in	data	is	indeed	the	SHA-256	hash	of
							the	RP	ID	expected	by	the	RP.							the	RP	ID	expected	by	the	RP.
				9.	Perform	an	ASCII	case-insensitive	match	on	fmt	to	determine	the				9.	Perform	an	ASCII	case-insensitive	match	on	fmt	to	determine	the
							attestation	statement	format.							attestation	statement	format.
			10.	Using	the	verification	process	for	the	above	attestation	statement			10.	Using	the	verification	process	for	the	above	attestation	statement
							format,	validate	that	stmt	is	a	valid	attestation	statement	for							format,	validate	that	stmt	is	a	valid	attestation	statement	for							format,	validate	that	stmt	is	a	valid	attestation	statement	for							format,	validate	that	stmt	is	a	valid	attestation	statement	for
							authenticator	data	data	and	the	clientDataHash	computed	in	step	6.							authenticator	data	data	and	the	clientDataHash	computed	in	step	6.							authenticator	data	data	and	the	clientDataHash	computed	in	step	6.							authenticator	data	data	and	the	clientDataHash	computed	in	step	6.							authenticator	data	data	and	the	clientDataHash	computed	in	step	6.

			11.	If	validation	is	successful,	obtain	a	list	of	acceptable	trust			11.	If	validation	is	successful,	obtain	a	list	of	acceptable	trust
							anchors	(attestation	root	certificates	or	DAA	root	keys)	for	that							anchors	(attestation	root	certificates	or	DAA	root	keys)	for	that
							attestation	type	and	attestation	statement	format	fmt,	from	a							attestation	type	and	attestation	statement	format	fmt,	from	a
							trusted	source	or	from	policy.	For	example,	the	FIDO	Metadata							trusted	source	or	from	policy.	For	example,	the	FIDO	Metadata
							Service	[FIDOMetadataService]	provides	one	way	to	access	such							Service	[FIDOMetadataService]	provides	one	way	to	access	such
							information,	using	the	AAGUID	in	data.							information,	using	the	AAGUID	in	data.							information,	using	the	AAGUID	in	data.							information,	using	the	AAGUID	in	data.
			12.	Verify	the	trustworthiness	of	the	attestation	using	the	outputs	of			12.	Verify	the	trustworthiness	of	the	attestation	using	the	outputs	of
							the	verification	process	in	step	10	as	follows:							the	verification	process	in	step	10	as	follows:
										+	If	self-attestation	was	used,	check	if	self-attestation	is										+	If	self-attestation	was	used,	check	if	self-attestation	is
												acceptable	under	Relying	Party	policy.												acceptable	under	Relying	Party	policy.
										+	If	DAA	was	used,	verify	that	the	DAA	key	used	is	in	the	set	of										+	If	DAA	was	used,	verify	that	the	DAA	key	used	is	in	the	set	of
												acceptable	trust	anchors	obtained	above.												acceptable	trust	anchors	obtained	above.
										+	Otherwise,	use	the	X.509	certificates	returned	by	the										+	Otherwise,	use	the	X.509	certificates	returned	by	the
												verification	process	to	verify	that	the	attestation	public	key												verification	process	to	verify	that	the	attestation	public	key
												correctly	chains	up	to	an	acceptable	root	certificate.												correctly	chains	up	to	an	acceptable	root	certificate.
			13.	If	the	attestation	statement	was	correctly	verified	and	found	to	be			13.	If	the	attestation	statement	was	correctly	verified	and	found	to	be
							trustworthy,	then	register	the	new	credential	by	associating	the							trustworthy,	then	register	the	new	credential	by	associating	the
							credential	ID	and	credential	public	key	found	in	data	with	the							credential	ID	and	credential	public	key	found	in	data	with	the							credential	ID	and	credential	public	key	found	in	data	with	the							credential	ID	and	credential	public	key	found	in	data	with	the
							Relying	Party	user	on	whose	behalf	the	makeCredential()	operation							Relying	Party	user	on	whose	behalf	the	makeCredential()	operation
							was	requested.							was	requested.
			14.	If	the	attestation	statement	was	correctly	verified	but	could	not			14.	If	the	attestation	statement	was	correctly	verified	but	could	not
							be	established	to	be	trustworthy,	the	Relying	Party	SHOULD	reject							be	established	to	be	trustworthy,	the	Relying	Party	SHOULD	reject
							the	registration	operation.	However,	if	permitted	by	policy,	the							the	registration	operation.	However,	if	permitted	by	policy,	the
							Relying	Party	MAY	register	the	credential	ID	and	credential	public							Relying	Party	MAY	register	the	credential	ID	and	credential	public
							key	but	treat	the	credential	as	one	with	self-attestation	(see							key	but	treat	the	credential	as	one	with	self-attestation	(see
							5.3.2	Attestation	Types).	If	doing	so,	the	Relying	Party	is							5.3.2	Attestation	Types).	If	doing	so,	the	Relying	Party	is
							asserting	there	is	no	cryptographic	proof	that	the	Scoped							asserting	there	is	no	cryptographic	proof	that	the	Scoped
							Credential	has	been	generated	by	a	particular	Authenticator	model.							Credential	has	been	generated	by	a	particular	Authenticator	model.
							See	[FIDOSecRef]	and	[UAFProtocol]	for	a	more	detailed	discussion.							See	[FIDOSecRef]	and	[UAFProtocol]	for	a	more	detailed	discussion.
			15.	If	the	attestation	statement	could	not	be	correctly	verified,	the			15.	If	the	attestation	statement	could	not	be	correctly	verified,	the
							Relying	Party	MUST	reject	the	registration	operation.							Relying	Party	MUST	reject	the	registration	operation.

			Verification	of	attestation	objects	requires	that	the	Relying	Party	has			Verification	of	attestation	objects	requires	that	the	Relying	Party	has

/Users/jehodges/Documents/work/standards/W3C/webauthn/index-vgb-u2f-attestation-dc90eab.txt,	Top	line:	1858

			When	requested	to	register	a	new	credential	with	a	ScopedCredentialInfo			When	requested	to	register	a	new	credential	with	a	ScopedCredentialInfo
			structure,	a	Relying	Party	must	proceed	as	follows:			structure,	a	Relying	Party	must	proceed	as	follows:
				1.	Perform	JSON	decoding	on	the	clientData	field	of	the				1.	Perform	JSON	decoding	on	the	clientData	field	of	the
							ScopedCredentialInfo	object	to	extract	the	ClientData	used	for	the							ScopedCredentialInfo	object	to	extract	the	ClientData	used	for	the
							credential's	attestation.							credential's	attestation.
				2.	Verify	that	the	challenge	in	the	ClientData	matches	the	challenge				2.	Verify	that	the	challenge	in	the	ClientData	matches	the	challenge
							that	was	sent	to	the	authenticator	in	the	makeCredential()	call.							that	was	sent	to	the	authenticator	in	the	makeCredential()	call.
				3.	Verify	that	the	origin	in	the	ClientData	matches	the	Relying				3.	Verify	that	the	origin	in	the	ClientData	matches	the	Relying
							Party's	origin.							Party's	origin.
				4.	Verify	that	the	tokenBinding	in	the	ClientData	matches	the	token				4.	Verify	that	the	tokenBinding	in	the	ClientData	matches	the	token
							binding	ID	for	the	TLS	connection	over	which	the	attestation	was							binding	ID	for	the	TLS	connection	over	which	the	attestation	was
							obtained.							obtained.
				5.	Verify	that	the	extensions	in	the	ClientData	is	a	proper	subset	of				5.	Verify	that	the	extensions	in	the	ClientData	is	a	proper	subset	of
							the	extensions	requested	by	the	RP.							the	extensions	requested	by	the	RP.
				6.	Compute	the	clientDataHash	over	clientData	using	the	hashAlg				6.	Compute	the	clientDataHash	over	clientData	using	the	hashAlg
							algorithm	found	in	the	ClientData	structure.							algorithm	found	in	the	ClientData	structure.
				7.	Perform	CBOR	decoding	on	the	attestationObject	field	of	the				7.	Perform	CBOR	decoding	on	the	attestationObject	field	of	the
							ScopedCredentialInfo	structure	to	obtain	the	attestation	statement							ScopedCredentialInfo	structure	to	obtain	the	attestation	statement
							format	fmt,	the	authenticator	data	authData,	and	the	attestation							format	fmt,	the	authenticator	data	authData,	and	the	attestation							format	fmt,	the	authenticator	data	authData,	and	the	attestation							format	fmt,	the	authenticator	data	authData,	and	the	attestation
							statement	attStmt.							statement	attStmt.							statement	attStmt.							statement	attStmt.
				8.	Verify	that	the	RP	ID	hash	in	authData	is	indeed	the	SHA-256	hash				8.	Verify	that	the	RP	ID	hash	in	authData	is	indeed	the	SHA-256	hash				8.	Verify	that	the	RP	ID	hash	in	authData	is	indeed	the	SHA-256	hash				8.	Verify	that	the	RP	ID	hash	in	authData	is	indeed	the	SHA-256	hash
							of	the	RP	ID	expected	by	the	RP.							of	the	RP	ID	expected	by	the	RP.							of	the	RP	ID	expected	by	the	RP.							of	the	RP	ID	expected	by	the	RP.
				9.	Perform	an	ASCII	case-insensitive	match	on	fmt	to	determine	the				9.	Perform	an	ASCII	case-insensitive	match	on	fmt	to	determine	the
							attestation	statement	format.							attestation	statement	format.
			10.	Using	the	verification	process	for	the	above	attestation	statement			10.	Using	the	verification	process	for	the	above	attestation	statement
							format,	validate	that	attStmt	is	a	valid	attestation	statement	for							format,	validate	that	attStmt	is	a	valid	attestation	statement	for							format,	validate	that	attStmt	is	a	valid	attestation	statement	for							format,	validate	that	attStmt	is	a	valid	attestation	statement	for
							authenticator	data	authData	and	the	clientDataHash	computed	in	step							authenticator	data	authData	and	the	clientDataHash	computed	in	step							authenticator	data	authData	and	the	clientDataHash	computed	in	step							authenticator	data	authData	and	the	clientDataHash	computed	in	step
							6.							6.
			11.	If	validation	is	successful,	obtain	a	list	of	acceptable	trust			11.	If	validation	is	successful,	obtain	a	list	of	acceptable	trust
							anchors	(attestation	root	certificates	or	DAA	root	keys)	for	that							anchors	(attestation	root	certificates	or	DAA	root	keys)	for	that
							attestation	type	and	attestation	statement	format	fmt,	from	a							attestation	type	and	attestation	statement	format	fmt,	from	a
							trusted	source	or	from	policy.	For	example,	the	FIDO	Metadata							trusted	source	or	from	policy.	For	example,	the	FIDO	Metadata
							Service	[FIDOMetadataService]	provides	one	way	to	access	such							Service	[FIDOMetadataService]	provides	one	way	to	access	such
							information,	using	the	AAGUID	in	authData.							information,	using	the	AAGUID	in	authData.							information,	using	the	AAGUID	in	authData.							information,	using	the	AAGUID	in	authData.
			12.	Verify	the	trustworthiness	of	the	attestation	using	the	outputs	of			12.	Verify	the	trustworthiness	of	the	attestation	using	the	outputs	of
							the	verification	process	in	step	10	as	follows:							the	verification	process	in	step	10	as	follows:
										+	If	self-attestation	was	used,	check	if	self-attestation	is										+	If	self-attestation	was	used,	check	if	self-attestation	is
												acceptable	under	Relying	Party	policy.												acceptable	under	Relying	Party	policy.
										+	If	DAA	was	used,	verify	that	the	DAA	key	used	is	in	the	set	of										+	If	DAA	was	used,	verify	that	the	DAA	key	used	is	in	the	set	of
												acceptable	trust	anchors	obtained	above.												acceptable	trust	anchors	obtained	above.
										+	Otherwise,	use	the	X.509	certificates	returned	by	the										+	Otherwise,	use	the	X.509	certificates	returned	by	the
												verification	process	to	verify	that	the	attestation	public	key												verification	process	to	verify	that	the	attestation	public	key
												correctly	chains	up	to	an	acceptable	root	certificate.												correctly	chains	up	to	an	acceptable	root	certificate.
			13.	If	the	attestation	statement	was	correctly	verified	and	found	to	be			13.	If	the	attestation	statement	was	correctly	verified	and	found	to	be
							trustworthy,	then	register	the	new	credential	by	associating	the							trustworthy,	then	register	the	new	credential	by	associating	the
							credential	ID	and	credential	public	key	found	in	authData	with	the							credential	ID	and	credential	public	key	found	in	authData	with	the							credential	ID	and	credential	public	key	found	in	authData	with	the							credential	ID	and	credential	public	key	found	in	authData	with	the
							Relying	Party	user	on	whose	behalf	the	makeCredential()	operation							Relying	Party	user	on	whose	behalf	the	makeCredential()	operation
							was	requested.							was	requested.
			14.	If	the	attestation	statement	was	correctly	verified	but	could	not			14.	If	the	attestation	statement	was	correctly	verified	but	could	not
							be	established	to	be	trustworthy,	the	Relying	Party	SHOULD	reject							be	established	to	be	trustworthy,	the	Relying	Party	SHOULD	reject
							the	registration	operation.	However,	if	permitted	by	policy,	the							the	registration	operation.	However,	if	permitted	by	policy,	the
							Relying	Party	MAY	register	the	credential	ID	and	credential	public							Relying	Party	MAY	register	the	credential	ID	and	credential	public
							key	but	treat	the	credential	as	one	with	self-attestation	(see							key	but	treat	the	credential	as	one	with	self-attestation	(see
							5.3.2	Attestation	Types).	If	doing	so,	the	Relying	Party	is							5.3.2	Attestation	Types).	If	doing	so,	the	Relying	Party	is
							asserting	there	is	no	cryptographic	proof	that	the	Scoped							asserting	there	is	no	cryptographic	proof	that	the	Scoped
							Credential	has	been	generated	by	a	particular	Authenticator	model.							Credential	has	been	generated	by	a	particular	Authenticator	model.
							See	[FIDOSecRef]	and	[UAFProtocol]	for	a	more	detailed	discussion.							See	[FIDOSecRef]	and	[UAFProtocol]	for	a	more	detailed	discussion.
			15.	If	the	attestation	statement	could	not	be	correctly	verified,	the			15.	If	the	attestation	statement	could	not	be	correctly	verified,	the
							Relying	Party	MUST	reject	the	registration	operation.							Relying	Party	MUST	reject	the	registration	operation.

			Verification	of	attestation	objects	requires	that	the	Relying	Party	has			Verification	of	attestation	objects	requires	that	the	Relying	Party	has
31/72



/Users/jehodges/Documents/work/standards/W3C/webauthn/index-vgb-u2f-attestation-0d0fcea.txt,	Top	line:	1921

			a	trusted	method	of	determining	acceptable	trust	anchors	in	Step	11			a	trusted	method	of	determining	acceptable	trust	anchors	in	Step	11
			above.	Also,	if	certificates	are	being	used,	the	Relying	Party	must			above.	Also,	if	certificates	are	being	used,	the	Relying	Party	must
			have	access	to	certificate	status	information	for	the	intermediate	CA			have	access	to	certificate	status	information	for	the	intermediate	CA
			certificates.	The	Relying	Party	must	also	be	able	to	build	the			certificates.	The	Relying	Party	must	also	be	able	to	build	the
			attestation	certificate	chain	if	the	client	did	not	provide	this	chain			attestation	certificate	chain	if	the	client	did	not	provide	this	chain
			in	the	attestation	information.			in	the	attestation	information.

			To	avoid	ambiguity	during	authentication,	the	Relying	Party	SHOULD			To	avoid	ambiguity	during	authentication,	the	Relying	Party	SHOULD
			check	that	each	credential	is	registered	to	no	more	than	one	user.	If			check	that	each	credential	is	registered	to	no	more	than	one	user.	If
			registration	is	requested	for	a	credential	that	is	already	registered			registration	is	requested	for	a	credential	that	is	already	registered
			to	a	different	user,	the	Relying	Party	MAY	reject	this	operation,	or	it			to	a	different	user,	the	Relying	Party	MAY	reject	this	operation,	or	it
			MAY	decide	to	accept	the	registration	while	deleting	the	older			MAY	decide	to	accept	the	registration	while	deleting	the	older
			registration.			registration.

		6.2.	Verifying	an	authentication	assertion		6.2.	Verifying	an	authentication	assertion

			When	requested	to	perform	authentication	with	an			When	requested	to	perform	authentication	with	an
			AuthenticationAssertion	structure,	the	Relying	Party	MUST	proceed	as			AuthenticationAssertion	structure,	the	Relying	Party	MUST	proceed	as
			follows:			follows:
				1.	Using	the	credential	identifier	contained	in	the	credential	member				1.	Using	the	credential	identifier	contained	in	the	credential	member
							of	the	AuthenticationAssertion	structure,	look	up	the	corresponding							of	the	AuthenticationAssertion	structure,	look	up	the	corresponding
							credential	public	key	as	well	as	the	Relying	Party	user	for	whom	it							credential	public	key	as	well	as	the	Relying	Party	user	for	whom	it
							is	registered.							is	registered.
				2.	Using	the	procedure	in	5.2.4	Verifying	a	signature,	verify	that				2.	Using	the	procedure	in	5.2.4	Verifying	a	signature,	verify	that
							signature	is	a	valid	signature	over	clientData	and							signature	is	a	valid	signature	over	clientData	and
							authenticatorData	with	the	above	public	key.							authenticatorData	with	the	above	public	key.
				3.	If	the	above	verification	succeeds,	authenticate	the	user	looked	up				3.	If	the	above	verification	succeeds,	authenticate	the	user	looked	up
							in	step	1.	Otherwise,	reject	the	authentication	request.							in	step	1.	Otherwise,	reject	the	authentication	request.

7.	Defined	Attestation	Statement	Formats7.	Defined	Attestation	Statement	Formats

			WebAuthn	supports	pluggable	attestation	statement	formats.	This	section			WebAuthn	supports	pluggable	attestation	statement	formats.	This	section
			defines	an	initial	set	of	such	formats.			defines	an	initial	set	of	such	formats.

		7.1.	Attestation	Format	Identifiers		7.1.	Attestation	Format	Identifiers

			Attestation	statement	formats	are	identified	by	a	string,	called	a			Attestation	statement	formats	are	identified	by	a	string,	called	a
			attestation	format	identifier,	chosen	by	the	author	of	the	attestation			attestation	format	identifier,	chosen	by	the	author	of	the	attestation
			statement	format.			statement	format.

			Attestation	format	identifiers	SHOULD	be	registered	per			Attestation	format	identifiers	SHOULD	be	registered	per
			[WebAuthn-Registries]	"Registries	for	Web	Authentication	(WebAuthn)".			[WebAuthn-Registries]	"Registries	for	Web	Authentication	(WebAuthn)".
			All	registered	attestation	format	identifiers	are	unique	amongst			All	registered	attestation	format	identifiers	are	unique	amongst
			themselves	as	a	matter	of	course.			themselves	as	a	matter	of	course.

			Unregistered	attestation	format	identifiers	SHOULD	use	reverse			Unregistered	attestation	format	identifiers	SHOULD	use	reverse
			domain-name	naming,	using	a	domain	name	registered	by	the	developer,	in			domain-name	naming,	using	a	domain	name	registered	by	the	developer,	in
			order	to	assure	uniqueness	of	the	identifier.	All	attestation	format			order	to	assure	uniqueness	of	the	identifier.	All	attestation	format
			identifiers	MUST	be	a	maximum	of	32	octets	in	length	and	MUST	consist			identifiers	MUST	be	a	maximum	of	32	octets	in	length	and	MUST	consist
			only	of	printable	USASCII	characters,	i.e.,	VCHAR	as	defined	in			only	of	printable	USASCII	characters,	i.e.,	VCHAR	as	defined	in
			[RFC5234]	(note:	this	means	attestation	format	identifiers	based	on			[RFC5234]	(note:	this	means	attestation	format	identifiers	based	on
			domain	names	MUST	incorporate	only	LDH	Labels	[RFC5890]).			domain	names	MUST	incorporate	only	LDH	Labels	[RFC5890]).
			Implementations	MUST	match	WebAuthn	attestation	format	identifiers	in	a			Implementations	MUST	match	WebAuthn	attestation	format	identifiers	in	a
			case-insensitive	fashion.			case-insensitive	fashion.

			Attestation	statement	formats	that	may	exist	in	multiple	versions			Attestation	statement	formats	that	may	exist	in	multiple	versions
			SHOULD	include	a	version	in	their	identifier.	In	effect,	different			SHOULD	include	a	version	in	their	identifier.	In	effect,	different
			versions	are	thus	treated	as	different	formats,	e.g.,	packed2	as	a	new			versions	are	thus	treated	as	different	formats,	e.g.,	packed2	as	a	new
			version	of	the	packed	attestation	statement	format.			version	of	the	packed	attestation	statement	format.

			The	following	sections	present	a	set	of	currently-defined	and			The	following	sections	present	a	set	of	currently-defined	and
			registered	attestation	statement	formats	and	their	identifiers.	See	the			registered	attestation	statement	formats	and	their	identifiers.	See	the

/Users/jehodges/Documents/work/standards/W3C/webauthn/index-vgb-u2f-attestation-dc90eab.txt,	Top	line:	1920

			a	trusted	method	of	determining	acceptable	trust	anchors	in	Step	11			a	trusted	method	of	determining	acceptable	trust	anchors	in	Step	11
			above.	Also,	if	certificates	are	being	used,	the	Relying	Party	must			above.	Also,	if	certificates	are	being	used,	the	Relying	Party	must
			have	access	to	certificate	status	information	for	the	intermediate	CA			have	access	to	certificate	status	information	for	the	intermediate	CA
			certificates.	The	Relying	Party	must	also	be	able	to	build	the			certificates.	The	Relying	Party	must	also	be	able	to	build	the
			attestation	certificate	chain	if	the	client	did	not	provide	this	chain			attestation	certificate	chain	if	the	client	did	not	provide	this	chain
			in	the	attestation	information.			in	the	attestation	information.

			To	avoid	ambiguity	during	authentication,	the	Relying	Party	SHOULD			To	avoid	ambiguity	during	authentication,	the	Relying	Party	SHOULD
			check	that	each	credential	is	registered	to	no	more	than	one	user.	If			check	that	each	credential	is	registered	to	no	more	than	one	user.	If
			registration	is	requested	for	a	credential	that	is	already	registered			registration	is	requested	for	a	credential	that	is	already	registered
			to	a	different	user,	the	Relying	Party	MAY	reject	this	operation,	or	it			to	a	different	user,	the	Relying	Party	MAY	reject	this	operation,	or	it
			MAY	decide	to	accept	the	registration	while	deleting	the	older			MAY	decide	to	accept	the	registration	while	deleting	the	older
			registration.			registration.

		6.2.	Verifying	an	authentication	assertion		6.2.	Verifying	an	authentication	assertion

			When	requested	to	perform	authentication	with	an			When	requested	to	perform	authentication	with	an
			AuthenticationAssertion	structure,	the	Relying	Party	MUST	proceed	as			AuthenticationAssertion	structure,	the	Relying	Party	MUST	proceed	as
			follows:			follows:
				1.	Using	the	credential	identifier	contained	in	the	credential	member				1.	Using	the	credential	identifier	contained	in	the	credential	member
							of	the	AuthenticationAssertion	structure,	look	up	the	corresponding							of	the	AuthenticationAssertion	structure,	look	up	the	corresponding
							credential	public	key	as	well	as	the	Relying	Party	user	for	whom	it							credential	public	key	as	well	as	the	Relying	Party	user	for	whom	it
							is	registered.							is	registered.
				2.	Using	the	procedure	in	5.2.4	Verifying	a	signature,	verify	that				2.	Using	the	procedure	in	5.2.4	Verifying	a	signature,	verify	that
							signature	is	a	valid	signature	over	clientData	and							signature	is	a	valid	signature	over	clientData	and
							authenticatorData	with	the	above	public	key.							authenticatorData	with	the	above	public	key.
				3.	If	the	above	verification	succeeds,	authenticate	the	user	looked	up				3.	If	the	above	verification	succeeds,	authenticate	the	user	looked	up
							in	step	1.	Otherwise,	reject	the	authentication	request.							in	step	1.	Otherwise,	reject	the	authentication	request.

7.	Defined	Attestation	Statement	Formats7.	Defined	Attestation	Statement	Formats

			WebAuthn	supports	pluggable	attestation	statement	formats.	This	section			WebAuthn	supports	pluggable	attestation	statement	formats.	This	section
			defines	an	initial	set	of	such	formats.			defines	an	initial	set	of	such	formats.

		7.1.	Attestation	Format	Identifiers		7.1.	Attestation	Format	Identifiers

			Attestation	statement	formats	are	identified	by	a	string,	called	a			Attestation	statement	formats	are	identified	by	a	string,	called	a
			attestation	format	identifier,	chosen	by	the	author	of	the	attestation			attestation	format	identifier,	chosen	by	the	author	of	the	attestation
			statement	format.			statement	format.

			Attestation	format	identifiers	SHOULD	be	registered	per			Attestation	format	identifiers	SHOULD	be	registered	per
			[WebAuthn-Registries]	"Registries	for	Web	Authentication	(WebAuthn)".			[WebAuthn-Registries]	"Registries	for	Web	Authentication	(WebAuthn)".
			All	registered	attestation	format	identifiers	are	unique	amongst			All	registered	attestation	format	identifiers	are	unique	amongst
			themselves	as	a	matter	of	course.			themselves	as	a	matter	of	course.

			Unregistered	attestation	format	identifiers	SHOULD	use	reverse			Unregistered	attestation	format	identifiers	SHOULD	use	reverse
			domain-name	naming,	using	a	domain	name	registered	by	the	developer,	in			domain-name	naming,	using	a	domain	name	registered	by	the	developer,	in
			order	to	assure	uniqueness	of	the	identifier.	All	attestation	format			order	to	assure	uniqueness	of	the	identifier.	All	attestation	format
			identifiers	MUST	be	a	maximum	of	32	octets	in	length	and	MUST	consist			identifiers	MUST	be	a	maximum	of	32	octets	in	length	and	MUST	consist
			only	of	printable	USASCII	characters,	i.e.,	VCHAR	as	defined	in			only	of	printable	USASCII	characters,	i.e.,	VCHAR	as	defined	in
			[RFC5234]	(note:	this	means	attestation	format	identifiers	based	on			[RFC5234]	(note:	this	means	attestation	format	identifiers	based	on
			domain	names	MUST	incorporate	only	LDH	Labels	[RFC5890]).			domain	names	MUST	incorporate	only	LDH	Labels	[RFC5890]).
			Implementations	MUST	match	WebAuthn	attestation	format	identifiers	in	a			Implementations	MUST	match	WebAuthn	attestation	format	identifiers	in	a
			case-insensitive	fashion.			case-insensitive	fashion.

			Attestation	statement	formats	that	may	exist	in	multiple	versions			Attestation	statement	formats	that	may	exist	in	multiple	versions
			SHOULD	include	a	version	in	their	identifier.	In	effect,	different			SHOULD	include	a	version	in	their	identifier.	In	effect,	different
			versions	are	thus	treated	as	different	formats,	e.g.,	packed2	as	a	new			versions	are	thus	treated	as	different	formats,	e.g.,	packed2	as	a	new
			version	of	the	packed	attestation	statement	format.			version	of	the	packed	attestation	statement	format.

			The	following	sections	present	a	set	of	currently-defined	and			The	following	sections	present	a	set	of	currently-defined	and
			registered	attestation	statement	formats	and	their	identifiers.	See	the			registered	attestation	statement	formats	and	their	identifiers.	See	the

32/72



/Users/jehodges/Documents/work/standards/W3C/webauthn/index-vgb-u2f-attestation-0d0fcea.txt,	Top	line:	1983

			WebAuthn	Attestation	Format	Identifier	Registry	defined	in			WebAuthn	Attestation	Format	Identifier	Registry	defined	in
			[WebAuthn-Registries]	for	an	up-to-date	list	of	registered	attestation			[WebAuthn-Registries]	for	an	up-to-date	list	of	registered	attestation
			statement	formats.			statement	formats.

		7.2.	Packed	Attestation	Statement	Format		7.2.	Packed	Attestation	Statement	Format

			This	is	a	WebAuthn	optimized	attestation	statement	format.	It	uses	a			This	is	a	WebAuthn	optimized	attestation	statement	format.	It	uses	a
			very	compact	but	still	extensible	encoding	method.	Encoding	this	format			very	compact	but	still	extensible	encoding	method.	Encoding	this	format
			can	even	be	implemented	by	authenticators	with	very	limited	resources			can	even	be	implemented	by	authenticators	with	very	limited	resources
			(e.g.,	secure	elements).			(e.g.,	secure	elements).

			Attestation	format	identifier			Attestation	format	identifier

										packed										packed

			Attestation	types	supported			Attestation	types	supported

										All										All

			Syntax			Syntax

										A	Packed	Attestation	statement	is	a	CBOR	map	with	the	following										A	Packed	Attestation	statement	is	a	CBOR	map	with	the	following
										fields:										fields:

								alg								alg

																A	text	string	containing	the	name	of	the	algorithm	used	to																A	text	string	containing	the	name	of	the	algorithm	used	to
																generate	the	attestation	signature	according	to	[RFC7518]																generate	the	attestation	signature	according	to	[RFC7518]
																section	3.1.	The	following	algorithms	are	supported:																section	3.1.	The	following	algorithms	are	supported:

														1.	"ES256",	"ES384"	and	"ES512"	[RFC7518]														1.	"ES256",	"ES384"	and	"ES512"	[RFC7518]
														2.	"RS256",	"RS384"	and	"RS512"	[RFC7518]														2.	"RS256",	"RS384"	and	"RS512"	[RFC7518]
														3.	"PS256",	"PS384"	and	"PS512"	[RFC7518]														3.	"PS256",	"PS384"	and	"PS512"	[RFC7518]
														4.	"ED256"	and	"ED512"	[FIDOEcdaaAlgorithm]														4.	"ED256"	and	"ED512"	[FIDOEcdaaAlgorithm]

								signature								signature								signature

																A	byte	string	containing	the	attestation	signature.																A	byte	string	containing	the	attestation	signature.

								x5c								x5c

																A	definite-length	array	of	byte	strings.	The	elements	of																A	definite-length	array	of	byte	strings.	The	elements	of
																the	array	contain	the	attestation	certificate	and	its																the	array	contain	the	attestation	certificate	and	its
																certificate	chain,	each	encoded	in	X.509	format.	The																certificate	chain,	each	encoded	in	X.509	format.	The
																attestation	certificate	must	be	the	first	element	in	the																attestation	certificate	must	be	the	first	element	in	the
																array.	This	field	is	present	only	if	Basic	attestation	or																array.	This	field	is	present	only	if	Basic	attestation	or
																Privacy	CA	attestation	is	in	use.																Privacy	CA	attestation	is	in	use.

								daaKey								daaKey

																A	byte	string	containing	the	DAA	root	key.	This	field	is																A	byte	string	containing	the	DAA	root	key.	This	field	is
																present	only	if	Direct	Anonymous	Attestation	is	in	use.																present	only	if	Direct	Anonymous	Attestation	is	in	use.

			Signing	procedure			Signing	procedure

										If	Basic	or	Privacy	CA	attestation	is	in	use,	the	authenticator										If	Basic	or	Privacy	CA	attestation	is	in	use,	the	authenticator
										produces	signature	by	following	the	procedure	in	5.2.3										produces	signature	by	following	the	procedure	in	5.2.3										produces	signature	by	following	the	procedure	in	5.2.3										produces	signature	by	following	the	procedure	in	5.2.3
										Generating	a	signature	with	the	given	clientDataHash	and										Generating	a	signature	with	the	given	clientDataHash	and										Generating	a	signature	with	the	given	clientDataHash	and										Generating	a	signature	with	the	given	clientDataHash	and
										authenticatorData	as	inputs,	using	an	attestation	private	key										authenticatorData	as	inputs,	using	an	attestation	private	key										authenticatorData	as	inputs,	using	an	attestation	private	key
										selected	through	an	authenticator-specific	mechanism.	It	sets										selected	through	an	authenticator-specific	mechanism.	It	sets										selected	through	an	authenticator-specific	mechanism.	It	sets
										x5c	to	the	certificate	chain	of	the	attestation	public	key	and										x5c	to	the	certificate	chain	of	the	attestation	public	key	and										x5c	to	the	certificate	chain	of	the	attestation	public	key	and										x5c	to	the	certificate	chain	of	the	attestation	public	key	and										x5c	to	the	certificate	chain	of	the	attestation	public	key	and
										alg	to	the	algorithm	of	the	attestation	private	key.										alg	to	the	algorithm	of	the	attestation	private	key.										alg	to	the	algorithm	of	the	attestation	private	key.										alg	to	the	algorithm	of	the	attestation	private	key.

/Users/jehodges/Documents/work/standards/W3C/webauthn/index-vgb-u2f-attestation-dc90eab.txt,	Top	line:	1982

			WebAuthn	Attestation	Format	Identifier	Registry	defined	in			WebAuthn	Attestation	Format	Identifier	Registry	defined	in
			[WebAuthn-Registries]	for	an	up-to-date	list	of	registered	attestation			[WebAuthn-Registries]	for	an	up-to-date	list	of	registered	attestation
			statement	formats.			statement	formats.

		7.2.	Packed	Attestation	Statement	Format		7.2.	Packed	Attestation	Statement	Format

			This	is	a	WebAuthn	optimized	attestation	statement	format.	It	uses	a			This	is	a	WebAuthn	optimized	attestation	statement	format.	It	uses	a
			very	compact	but	still	extensible	encoding	method.	Encoding	this	format			very	compact	but	still	extensible	encoding	method.	Encoding	this	format
			can	even	be	implemented	by	authenticators	with	very	limited	resources			can	even	be	implemented	by	authenticators	with	very	limited	resources
			(e.g.,	secure	elements).			(e.g.,	secure	elements).

			Attestation	format	identifier			Attestation	format	identifier

										packed										packed

			Attestation	types	supported			Attestation	types	supported

										All										All

			Syntax			Syntax

										A	Packed	Attestation	statement	is	a	CBOR	map	with	the	following										A	Packed	Attestation	statement	is	a	CBOR	map	with	the	following
										fields:										fields:

								alg								alg

																A	text	string	containing	the	name	of	the	algorithm	used	to																A	text	string	containing	the	name	of	the	algorithm	used	to
																generate	the	attestation	signature	according	to	[RFC7518]																generate	the	attestation	signature	according	to	[RFC7518]
																section	3.1.	The	following	algorithms	are	supported:																section	3.1.	The	following	algorithms	are	supported:

														1.	"ES256",	"ES384"	and	"ES512"	[RFC7518]														1.	"ES256",	"ES384"	and	"ES512"	[RFC7518]
														2.	"RS256",	"RS384"	and	"RS512"	[RFC7518]														2.	"RS256",	"RS384"	and	"RS512"	[RFC7518]
														3.	"PS256",	"PS384"	and	"PS512"	[RFC7518]														3.	"PS256",	"PS384"	and	"PS512"	[RFC7518]
														4.	"ED256"	and	"ED512"	[FIDOEcdaaAlgorithm]														4.	"ED256"	and	"ED512"	[FIDOEcdaaAlgorithm]

								sig								sig

																A	byte	string	containing	the	attestation	signature.																A	byte	string	containing	the	attestation	signature.

								x5c								x5c

																A	definite-length	array	of	byte	strings.	The	elements	of																A	definite-length	array	of	byte	strings.	The	elements	of
																the	array	contain	the	attestation	certificate	and	its																the	array	contain	the	attestation	certificate	and	its
																certificate	chain,	each	encoded	in	X.509	format.	The																certificate	chain,	each	encoded	in	X.509	format.	The
																attestation	certificate	must	be	the	first	element	in	the																attestation	certificate	must	be	the	first	element	in	the
																array.	This	field	is	present	only	if	Basic	attestation	or																array.	This	field	is	present	only	if	Basic	attestation	or
																Privacy	CA	attestation	is	in	use.																Privacy	CA	attestation	is	in	use.

								daaKey								daaKey

																A	byte	string	containing	the	DAA	root	key.	This	field	is																A	byte	string	containing	the	DAA	root	key.	This	field	is
																present	only	if	Direct	Anonymous	Attestation	is	in	use.																present	only	if	Direct	Anonymous	Attestation	is	in	use.

			Signing	procedure			Signing	procedure

										If	Basic	or	Privacy	CA	attestation	is	in	use,	the	authenticator										If	Basic	or	Privacy	CA	attestation	is	in	use,	the	authenticator
										produces	sig	by	following	the	procedure	in	5.2.3	Generating	a										produces	sig	by	following	the	procedure	in	5.2.3	Generating	a										produces	sig	by	following	the	procedure	in	5.2.3	Generating	a
										signature	with	the	given	clientDataHash	and	authenticatorData	as										signature	with	the	given	clientDataHash	and	authenticatorData	as										signature	with	the	given	clientDataHash	and	authenticatorData	as
										inputs,	using	an	attestation	private	key	selected	through	an										inputs,	using	an	attestation	private	key	selected	through	an										inputs,	using	an	attestation	private	key	selected	through	an
										authenticator-specific	mechanism.	It	sets	x5c	to	the	certificate										authenticator-specific	mechanism.	It	sets	x5c	to	the	certificate										authenticator-specific	mechanism.	It	sets	x5c	to	the	certificate
										chain	of	the	attestation	public	key	and	alg	to	the	algorithm	of										chain	of	the	attestation	public	key	and	alg	to	the	algorithm	of										chain	of	the	attestation	public	key	and	alg	to	the	algorithm	of										chain	of	the	attestation	public	key	and	alg	to	the	algorithm	of										chain	of	the	attestation	public	key	and	alg	to	the	algorithm	of
										the	attestation	private	key.										the	attestation	private	key.

33/72



/Users/jehodges/Documents/work/standards/W3C/webauthn/index-vgb-u2f-attestation-0d0fcea.txt,	Top	line:	2045

										If	DAA	is	in	use,	the	authenticator	produces	signature	by										If	DAA	is	in	use,	the	authenticator	produces	signature	by										If	DAA	is	in	use,	the	authenticator	produces	signature	by

										following	the	procedure	in	5.2.3	Generating	a	signature	with										following	the	procedure	in	5.2.3	Generating	a	signature	with
										the	given	clientDataHash	and	authenticatorData	as	inputs,	using										the	given	clientDataHash	and	authenticatorData	as	inputs,	using
										DAA-Sign	with	a	DAA	root	key	selected	through	an										DAA-Sign	with	a	DAA	root	key	selected	through	an										DAA-Sign	with	a	DAA	root	key	selected	through	an										DAA-Sign	with	a	DAA	root	key	selected	through	an										DAA-Sign	with	a	DAA	root	key	selected	through	an
										authenticator-specific	mechanism	(see	[FIDOEcdaaAlgorithm]).	It										authenticator-specific	mechanism	(see	[FIDOEcdaaAlgorithm]).	It										authenticator-specific	mechanism	(see	[FIDOEcdaaAlgorithm]).	It										authenticator-specific	mechanism	(see	[FIDOEcdaaAlgorithm]).	It										authenticator-specific	mechanism	(see	[FIDOEcdaaAlgorithm]).	It
										sets	alg	to	the	algorithm	of	the	DAA	root	key	and	daaKey	to	the										sets	alg	to	the	algorithm	of	the	DAA	root	key	and	daaKey	to	the
										DAA	root	key.										DAA	root	key.

										If	self	attestation	is	in	use,	the	authenticator	produces										If	self	attestation	is	in	use,	the	authenticator	produces
										signature	by	following	the	procedure	in	5.2.3	Generating	a										signature	by	following	the	procedure	in	5.2.3	Generating	a
										signature	with	the	given	clientDataHash	and	authenticatorData	as										signature	with	the	given	clientDataHash	and	authenticatorData	as
										inputs,	using	the	credential	private	key.	It	sets	alg	to	the										inputs,	using	the	credential	private	key.	It	sets	alg	to	the
										algorithm	of	the	credential	private	key,	and	omits	the	other										algorithm	of	the	credential	private	key,	and	omits	the	other
										fields.										fields.

			Verification	procedure			Verification	procedure

										If	both	x5c	and	daaKey	are	present,	terminate	this	procedure										If	both	x5c	and	daaKey	are	present,	terminate	this	procedure
										with	an	error.										with	an	error.

										If	x5c	is	present,	this	indicates	that	the	attestation	type	is										If	x5c	is	present,	this	indicates	that	the	attestation	type	is
										not	DAA.	In	this	case:										not	DAA.	In	this	case:

										+	Follow	the	procedure	in	5.2.4	Verifying	a	signature	to	verify										+	Follow	the	procedure	in	5.2.4	Verifying	a	signature	to	verify
												that	signature	is	a	valid	signature	over	the	given												that	signature	is	a	valid	signature	over	the	given												that	signature	is	a	valid	signature	over	the	given												that	signature	is	a	valid	signature	over	the	given
												authenticatorData	and	clientDataHash	using	the	attestation												authenticatorData	and	clientDataHash	using	the	attestation												authenticatorData	and	clientDataHash	using	the	attestation
												public	key	in	x5c	with	the	algorithm	specified	in	alg.												public	key	in	x5c	with	the	algorithm	specified	in	alg.												public	key	in	x5c	with	the	algorithm	specified	in	alg.												public	key	in	x5c	with	the	algorithm	specified	in	alg.
										+	Verify	that	x5c	meets	the	requirements	in	7.2.1	Packed										+	Verify	that	x5c	meets	the	requirements	in	7.2.1	Packed
												attestation	statement	certificate	requirements.												attestation	statement	certificate	requirements.
										+	If	x5c	contains	an	extension	with	OID	1	3	6	1	4	1	45724	1	1	4										+	If	x5c	contains	an	extension	with	OID	1	3	6	1	4	1	45724	1	1	4
												(id-fido-gen-ce-aaguid)	verify	that	the	value	of	this												(id-fido-gen-ce-aaguid)	verify	that	the	value	of	this
												extension	matches	the	AAGUID	in	the	claimed	authenticatorData.												extension	matches	the	AAGUID	in	the	claimed	authenticatorData.
										+	If	successful,	return	attestation	type	Basic	and	trust	path										+	If	successful,	return	attestation	type	Basic	and	trust	path
												x5c.												x5c.

										If	daaKey	is	present,	then	the	attestation	type	is	DAA.	In	this										If	daaKey	is	present,	then	the	attestation	type	is	DAA.	In	this
										case:										case:

										+	Verify	that	alg	is	"ED256"	or	"ED512".										+	Verify	that	alg	is	"ED256"	or	"ED512".
										+	Follow	the	procedure	in	5.2.4	Verifying	a	signature	to	verify										+	Follow	the	procedure	in	5.2.4	Verifying	a	signature	to	verify
												that	signature	is	a	valid	signature	over	the	given												that	signature	is	a	valid	signature	over	the	given												that	signature	is	a	valid	signature	over	the	given												that	signature	is	a	valid	signature	over	the	given
												authenticatorData	and	clientDataHash	using	DAA-Verify	with												authenticatorData	and	clientDataHash	using	DAA-Verify	with												authenticatorData	and	clientDataHash	using	DAA-Verify	with
												daaKey	(see	[FIDOEcdaaAlgorithm]).												daaKey	(see	[FIDOEcdaaAlgorithm]).												daaKey	(see	[FIDOEcdaaAlgorithm]).												daaKey	(see	[FIDOEcdaaAlgorithm]).
										+	If	successful,	return	attestation	type	DAA	and	trust	path										+	If	successful,	return	attestation	type	DAA	and	trust	path
												daaKey.												daaKey.

										If	neither	x5c	nor	daaKey	is	present,	self	attestation	is	in										If	neither	x5c	nor	daaKey	is	present,	self	attestation	is	in
										use.										use.

										+	Validate	that	alg	matches	the	algorithm	of	the	credential										+	Validate	that	alg	matches	the	algorithm	of	the	credential
												private	key	in	the	claimed	authenticatorData.												private	key	in	the	claimed	authenticatorData.
										+	Construct	attToBeSigned	from	the	claimed	authenticatorData	and										+	Construct	attToBeSigned	from	the	claimed	authenticatorData	and
												ClientData,	and	verify	the	signature	using	the	credential												ClientData,	and	verify	the	signature	using	the	credential
												public	key.												public	key.

/Users/jehodges/Documents/work/standards/W3C/webauthn/index-vgb-u2f-attestation-dc90eab.txt,	Top	line:	2044

										If	DAA	is	in	use,	the	authenticator	produces	sig	by	following										If	DAA	is	in	use,	the	authenticator	produces	sig	by	following										If	DAA	is	in	use,	the	authenticator	produces	sig	by	following
										the	procedure	in	5.2.3	Generating	a	signature	with	the	given										the	procedure	in	5.2.3	Generating	a	signature	with	the	given
										clientDataHash	and	authenticatorData	as	inputs,	using	DAA-Sign										clientDataHash	and	authenticatorData	as	inputs,	using	DAA-Sign
										with	a	DAA	root	key	selected	through	an	authenticator-specific										with	a	DAA	root	key	selected	through	an	authenticator-specific
										mechanism	(see	[FIDOEcdaaAlgorithm]).	It	sets	alg	to	the										mechanism	(see	[FIDOEcdaaAlgorithm]).	It	sets	alg	to	the
										algorithm	of	the	DAA	root	key	and	daaKey	to	the	DAA	root	key.										algorithm	of	the	DAA	root	key	and	daaKey	to	the	DAA	root	key.

										If	self	attestation	is	in	use,	the	authenticator	produces	sig	by										If	self	attestation	is	in	use,	the	authenticator	produces	sig	by
										following	the	procedure	in	5.2.3	Generating	a	signature	with										following	the	procedure	in	5.2.3	Generating	a	signature	with
										the	given	clientDataHash	and	authenticatorData	as	inputs,	using										the	given	clientDataHash	and	authenticatorData	as	inputs,	using
										the	credential	private	key.	It	sets	alg	to	the	algorithm	of	the										the	credential	private	key.	It	sets	alg	to	the	algorithm	of	the										the	credential	private	key.	It	sets	alg	to	the	algorithm	of	the										the	credential	private	key.	It	sets	alg	to	the	algorithm	of	the										the	credential	private	key.	It	sets	alg	to	the	algorithm	of	the
										credential	private	key,	and	omits	the	other	fields.										credential	private	key,	and	omits	the	other	fields.										credential	private	key,	and	omits	the	other	fields.										credential	private	key,	and	omits	the	other	fields.										credential	private	key,	and	omits	the	other	fields.

			Verification	procedure			Verification	procedure

										If	both	x5c	and	daaKey	are	present,	terminate	this	procedure										If	both	x5c	and	daaKey	are	present,	terminate	this	procedure
										with	an	error.										with	an	error.

										If	x5c	is	present,	this	indicates	that	the	attestation	type	is										If	x5c	is	present,	this	indicates	that	the	attestation	type	is
										not	DAA.	In	this	case:										not	DAA.	In	this	case:

										+	Follow	the	procedure	in	5.2.4	Verifying	a	signature	to	verify										+	Follow	the	procedure	in	5.2.4	Verifying	a	signature	to	verify
												that	sig	is	a	valid	signature	over	the	given	authenticatorData												that	sig	is	a	valid	signature	over	the	given	authenticatorData												that	sig	is	a	valid	signature	over	the	given	authenticatorData
												and	clientDataHash	using	the	attestation	public	key	in	x5c												and	clientDataHash	using	the	attestation	public	key	in	x5c												and	clientDataHash	using	the	attestation	public	key	in	x5c
												with	the	algorithm	specified	in	alg.												with	the	algorithm	specified	in	alg.
										+	Verify	that	x5c	meets	the	requirements	in	7.2.1	Packed										+	Verify	that	x5c	meets	the	requirements	in	7.2.1	Packed
												attestation	statement	certificate	requirements.												attestation	statement	certificate	requirements.
										+	If	x5c	contains	an	extension	with	OID	1	3	6	1	4	1	45724	1	1	4										+	If	x5c	contains	an	extension	with	OID	1	3	6	1	4	1	45724	1	1	4
												(id-fido-gen-ce-aaguid)	verify	that	the	value	of	this												(id-fido-gen-ce-aaguid)	verify	that	the	value	of	this
												extension	matches	the	AAGUID	in	the	claimed	authenticatorData.												extension	matches	the	AAGUID	in	the	claimed	authenticatorData.
										+	If	successful,	return	attestation	type	Basic	and	trust	path										+	If	successful,	return	attestation	type	Basic	and	trust	path
												x5c.												x5c.

										If	daaKey	is	present,	then	the	attestation	type	is	DAA.	In	this										If	daaKey	is	present,	then	the	attestation	type	is	DAA.	In	this
										case:										case:

										+	Verify	that	alg	is	"ED256"	or	"ED512".										+	Verify	that	alg	is	"ED256"	or	"ED512".
										+	Follow	the	procedure	in	5.2.4	Verifying	a	signature	to	verify										+	Follow	the	procedure	in	5.2.4	Verifying	a	signature	to	verify
												that	sig	is	a	valid	signature	over	the	given	authenticatorData												that	sig	is	a	valid	signature	over	the	given	authenticatorData												that	sig	is	a	valid	signature	over	the	given	authenticatorData
												and	clientDataHash	using	DAA-Verify	with	daaKey	(see												and	clientDataHash	using	DAA-Verify	with	daaKey	(see												and	clientDataHash	using	DAA-Verify	with	daaKey	(see
												[FIDOEcdaaAlgorithm]).												[FIDOEcdaaAlgorithm]).
										+	If	successful,	return	attestation	type	DAA	and	trust	path										+	If	successful,	return	attestation	type	DAA	and	trust	path
												daaKey.												daaKey.

										If	neither	x5c	nor	daaKey	is	present,	self	attestation	is	in										If	neither	x5c	nor	daaKey	is	present,	self	attestation	is	in
										use.										use.

										+	Validate	that	alg	matches	the	algorithm	of	the	credential										+	Validate	that	alg	matches	the	algorithm	of	the	credential
												private	key	in	the	claimed	authenticatorData.												private	key	in	the	claimed	authenticatorData.

34/72



/Users/jehodges/Documents/work/standards/W3C/webauthn/index-vgb-u2f-attestation-0d0fcea.txt,	Top	line:	2100

										+	Follow	the	procedure	in	5.2.4	Verifying	a	signature	to	verify										+	Follow	the	procedure	in	5.2.4	Verifying	a	signature	to	verify
												that	signature	is	a	valid	signature	over	the	given												that	signature	is	a	valid	signature	over	the	given												that	signature	is	a	valid	signature	over	the	given												that	signature	is	a	valid	signature	over	the	given
												authenticatorData	and	clientDataHash	using	the	credential												authenticatorData	and	clientDataHash	using	the	credential												authenticatorData	and	clientDataHash	using	the	credential
												public	key	with	alg.												public	key	with	alg.
										+	If	successful,	return	attestation	type	Self	and	empty	trust										+	If	successful,	return	attestation	type	Self	and	empty	trust
												path.												path.

				7.2.1.	Packed	attestation	statement	certificate	requirements				7.2.1.	Packed	attestation	statement	certificate	requirements

			The	attestation	certificate	MUST	have	the	following	fields/extensions:			The	attestation	certificate	MUST	have	the	following	fields/extensions:
					*	Version	must	be	set	to	3.					*	Version	must	be	set	to	3.
					*	Subject	field	MUST	be	set	to:					*	Subject	field	MUST	be	set	to:

								Subject-C								Subject-C

																Country	where	the	Authenticator	vendor	is	incorporated																Country	where	the	Authenticator	vendor	is	incorporated

								Subject-O								Subject-O

																Legal	name	of	the	Authenticator	vendor																Legal	name	of	the	Authenticator	vendor

								Subject-OU								Subject-OU

																Authenticator	Attestation																Authenticator	Attestation

								Subject-CN								Subject-CN

																No	stipulation.																No	stipulation.

					*	If	the	related	attestation	root	certificate	is	used	for	multiple					*	If	the	related	attestation	root	certificate	is	used	for	multiple
							authenticator	models,	the	Extension	OID	1	3	6	1	4	1	45724	1	1	4							authenticator	models,	the	Extension	OID	1	3	6	1	4	1	45724	1	1	4
							(id-fido-gen-ce-aaguid)	MUST	be	present,	containing	the	AAGUID	as							(id-fido-gen-ce-aaguid)	MUST	be	present,	containing	the	AAGUID	as
							value.							value.
					*	The	Basic	Constraints	extension	MUST	have	the	CA	component	set	to					*	The	Basic	Constraints	extension	MUST	have	the	CA	component	set	to
							false							false
					*	An	Authority	Information	Access	(AIA)	extension	with	entry					*	An	Authority	Information	Access	(AIA)	extension	with	entry
							id-ad-ocsp	and	a	CRL	Distribution	Point	extension	[RFC5280]	are							id-ad-ocsp	and	a	CRL	Distribution	Point	extension	[RFC5280]	are
							both	optional	as	the	status	of	many	attestation	certificates	is							both	optional	as	the	status	of	many	attestation	certificates	is
							available	through	authenticator	metadata	services.	See,	for							available	through	authenticator	metadata	services.	See,	for
							example,	the	FIDO	Metadata	Service	[FIDOMetadataService].							example,	the	FIDO	Metadata	Service	[FIDOMetadataService].

		7.3.	TPM	Attestation	Statement	Format		7.3.	TPM	Attestation	Statement	Format

			This	attestation	statement	format	is	generally	used	by	authenticators			This	attestation	statement	format	is	generally	used	by	authenticators
			that	use	a	Trusted	Platform	Module	as	their	cryptographic	engine.			that	use	a	Trusted	Platform	Module	as	their	cryptographic	engine.

			Attestation	format	identifier			Attestation	format	identifier

										tpm										tpm

			Attestation	types	supported			Attestation	types	supported

										Privacy	CA,	DAA										Privacy	CA,	DAA

			Syntax			Syntax

										A	TPM	Attestation	statement	is	a	CBOR	map	with	the	following										A	TPM	Attestation	statement	is	a	CBOR	map	with	the	following
										fields:										fields:

								tpmVersion								tpmVersion								tpmVersion

																A	text	string	containing	the	version	of	the	TPM																A	text	string	containing	the	version	of	the	TPM

/Users/jehodges/Documents/work/standards/W3C/webauthn/index-vgb-u2f-attestation-dc90eab.txt,	Top	line:	2094

										+	Follow	the	procedure	in	5.2.4	Verifying	a	signature	to	verify										+	Follow	the	procedure	in	5.2.4	Verifying	a	signature	to	verify
												that	sig	is	a	valid	signature	over	the	given	authenticatorData												that	sig	is	a	valid	signature	over	the	given	authenticatorData												that	sig	is	a	valid	signature	over	the	given	authenticatorData
												and	clientDataHash	using	the	credential	public	key	with	alg.												and	clientDataHash	using	the	credential	public	key	with	alg.												and	clientDataHash	using	the	credential	public	key	with	alg.

										+	If	successful,	return	attestation	type	Self	and	empty	trust										+	If	successful,	return	attestation	type	Self	and	empty	trust
												path.												path.

				7.2.1.	Packed	attestation	statement	certificate	requirements				7.2.1.	Packed	attestation	statement	certificate	requirements

			The	attestation	certificate	MUST	have	the	following	fields/extensions:			The	attestation	certificate	MUST	have	the	following	fields/extensions:
					*	Version	must	be	set	to	3.					*	Version	must	be	set	to	3.
					*	Subject	field	MUST	be	set	to:					*	Subject	field	MUST	be	set	to:

								Subject-C								Subject-C

																Country	where	the	Authenticator	vendor	is	incorporated																Country	where	the	Authenticator	vendor	is	incorporated

								Subject-O								Subject-O

																Legal	name	of	the	Authenticator	vendor																Legal	name	of	the	Authenticator	vendor

								Subject-OU								Subject-OU

																Authenticator	Attestation																Authenticator	Attestation

								Subject-CN								Subject-CN

																No	stipulation.																No	stipulation.

					*	If	the	related	attestation	root	certificate	is	used	for	multiple					*	If	the	related	attestation	root	certificate	is	used	for	multiple
							authenticator	models,	the	Extension	OID	1	3	6	1	4	1	45724	1	1	4							authenticator	models,	the	Extension	OID	1	3	6	1	4	1	45724	1	1	4
							(id-fido-gen-ce-aaguid)	MUST	be	present,	containing	the	AAGUID	as							(id-fido-gen-ce-aaguid)	MUST	be	present,	containing	the	AAGUID	as
							value.							value.
					*	The	Basic	Constraints	extension	MUST	have	the	CA	component	set	to					*	The	Basic	Constraints	extension	MUST	have	the	CA	component	set	to
							false							false
					*	An	Authority	Information	Access	(AIA)	extension	with	entry					*	An	Authority	Information	Access	(AIA)	extension	with	entry
							id-ad-ocsp	and	a	CRL	Distribution	Point	extension	[RFC5280]	are							id-ad-ocsp	and	a	CRL	Distribution	Point	extension	[RFC5280]	are
							both	optional	as	the	status	of	many	attestation	certificates	is							both	optional	as	the	status	of	many	attestation	certificates	is
							available	through	authenticator	metadata	services.	See,	for							available	through	authenticator	metadata	services.	See,	for
							example,	the	FIDO	Metadata	Service	[FIDOMetadataService].							example,	the	FIDO	Metadata	Service	[FIDOMetadataService].

		7.3.	TPM	Attestation	Statement	Format		7.3.	TPM	Attestation	Statement	Format

			This	attestation	statement	format	is	generally	used	by	authenticators			This	attestation	statement	format	is	generally	used	by	authenticators
			that	use	a	Trusted	Platform	Module	as	their	cryptographic	engine.			that	use	a	Trusted	Platform	Module	as	their	cryptographic	engine.

			Attestation	format	identifier			Attestation	format	identifier

										tpm										tpm

			Attestation	types	supported			Attestation	types	supported

										Privacy	CA,	DAA										Privacy	CA,	DAA

			Syntax			Syntax

										A	TPM	Attestation	statement	is	a	CBOR	map	with	the	following										A	TPM	Attestation	statement	is	a	CBOR	map	with	the	following
										fields:										fields:

								ver								ver								ver

																A	text	string	containing	the	version	of	the	TPM																A	text	string	containing	the	version	of	the	TPM
35/72



/Users/jehodges/Documents/work/standards/W3C/webauthn/index-vgb-u2f-attestation-0d0fcea.txt,	Top	line:	2162

																specification	to	which	the	signature	conforms.	Currently																specification	to	which	the	signature	conforms.	Currently
																the	only	supported	version	is	"2.0".																the	only	supported	version	is	"2.0".

								x5c								x5c

																A	definite-length	array	of	byte	strings.	The	elements	of																A	definite-length	array	of	byte	strings.	The	elements	of
																the	array	contain	the	AIK	certificate	used	for	the																the	array	contain	the	AIK	certificate	used	for	the
																attestation,	each	encoded	in	X.509	format.	The	attestation																attestation,	each	encoded	in	X.509	format.	The	attestation
																certificate	must	be	the	first	element	in	the	array.																certificate	must	be	the	first	element	in	the	array.

								alg								alg

																A	text	string	containing	the	name	of	the	algorithm	used	to																A	text	string	containing	the	name	of	the	algorithm	used	to
																generate	the	attestation	signature	according	to	[RFC7518]																generate	the	attestation	signature	according	to	[RFC7518]
																section	3.1.	The	following	algorithms	are	supported:																section	3.1.	The	following	algorithms	are	supported:

														1.	"ES256"	[RFC7518]														1.	"ES256"	[RFC7518]
														2.	"RS256"	[RFC7518]														2.	"RS256"	[RFC7518]
														3.	"PS256"	[RFC7518]														3.	"PS256"	[RFC7518]
														4.	"ED256"	[FIDOEcdaaAlgorithm]														4.	"ED256"	[FIDOEcdaaAlgorithm]
														5.	"ED512"	[FIDOEcdaaAlgorithm]														5.	"ED512"	[FIDOEcdaaAlgorithm]

								signature								signature								signature

																A	byte	string	containing	the	attestation	signature,	in	the																A	byte	string	containing	the	attestation	signature,	in	the
																form	of	a	TPMT_SIGNATURE	structure	as	specified	in																form	of	a	TPMT_SIGNATURE	structure	as	specified	in
																[TPMv2-Part2]	section	11.3.4.																[TPMv2-Part2]	section	11.3.4.

								certifyInfo								certifyInfo								certifyInfo								certifyInfo

																A	byte	string	containing	the	structure	over	which	the																A	byte	string	containing	the	structure	over	which	the
																attestation	signature	was	computed.	This	is	a	TPMS_ATTEST																attestation	signature	was	computed.	This	is	a	TPMS_ATTEST
																structure	as	specified	in	[TPMv2-Part2]	section	10.12.8.																structure	as	specified	in	[TPMv2-Part2]	section	10.12.8.

								publicArea								publicArea								publicArea								publicArea

																The	TPMT_PUBLIC	structure	(see	[TPMv2-Part2]	section																The	TPMT_PUBLIC	structure	(see	[TPMv2-Part2]	section
																12.2.4)	used	by	the	TPM	to	represent	the	credential	public																12.2.4)	used	by	the	TPM	to	represent	the	credential	public
																key.																key.

			Signing	procedure			Signing	procedure

										Concatenate	the	given	authenticatorData	and	clientDataHash	as										Concatenate	the	given	authenticatorData	and	clientDataHash	as
										shown	in	5.2.3	Generating	a	signature	to	form	attToBeSigned.										shown	in	5.2.3	Generating	a	signature	to	form	attToBeSigned.

										Generate	a	signature	using	the	procedure	specified	in										Generate	a	signature	using	the	procedure	specified	in
										[TPMv2-Part3]	Section	18.2,	using	the	attestation	private	key										[TPMv2-Part3]	Section	18.2,	using	the	attestation	private	key
										and	setting	the	qualifyingData	parameter	to	attToBeSigned.										and	setting	the	qualifyingData	parameter	to	attToBeSigned.

										Set	the	publicArea	field	to	the	public	area	of	the	credential										Set	the	publicArea	field	to	the	public	area	of	the	credential										Set	the	publicArea	field	to	the	public	area	of	the	credential										Set	the	publicArea	field	to	the	public	area	of	the	credential
										public	key,	the	certifyInfo	field	to	the	output	parameter	of	the										public	key,	the	certifyInfo	field	to	the	output	parameter	of	the										public	key,	the	certifyInfo	field	to	the	output	parameter	of	the										public	key,	the	certifyInfo	field	to	the	output	parameter	of	the
										same	name,	and	the	signature	to	the	signature	obtained	from	the										same	name,	and	the	signature	to	the	signature	obtained	from	the										same	name,	and	the	signature	to	the	signature	obtained	from	the										same	name,	and	the	signature	to	the	signature	obtained	from	the
										above	procedure.										above	procedure.

			Verification	procedure			Verification	procedure

										Verify	that	the	public	key	specified	by	the	parameters	and										Verify	that	the	public	key	specified	by	the	parameters	and
										unique	fields	of	publicArea	is	identical	to	the	public	key										unique	fields	of	publicArea	is	identical	to	the	public	key										unique	fields	of	publicArea	is	identical	to	the	public	key										unique	fields	of	publicArea	is	identical	to	the	public	key
										contained	in	the	attestation	data	inside	the	claimed										contained	in	the	attestation	data	inside	the	claimed
										authenticatorData										authenticatorData

										Concatenate	the	given	authenticatorData	and	clientDataHash	as										Concatenate	the	given	authenticatorData	and	clientDataHash	as

/Users/jehodges/Documents/work/standards/W3C/webauthn/index-vgb-u2f-attestation-dc90eab.txt,	Top	line:	2155

																specification	to	which	the	signature	conforms.	Currently																specification	to	which	the	signature	conforms.	Currently
																the	only	supported	version	is	"2.0".																the	only	supported	version	is	"2.0".

								x5c								x5c

																A	definite-length	array	of	byte	strings.	The	elements	of																A	definite-length	array	of	byte	strings.	The	elements	of
																the	array	contain	the	AIK	certificate	used	for	the																the	array	contain	the	AIK	certificate	used	for	the
																attestation,	each	encoded	in	X.509	format.	The	attestation																attestation,	each	encoded	in	X.509	format.	The	attestation
																certificate	must	be	the	first	element	in	the	array.																certificate	must	be	the	first	element	in	the	array.

								alg								alg

																A	text	string	containing	the	name	of	the	algorithm	used	to																A	text	string	containing	the	name	of	the	algorithm	used	to
																generate	the	attestation	signature	according	to	[RFC7518]																generate	the	attestation	signature	according	to	[RFC7518]
																section	3.1.	The	following	algorithms	are	supported:																section	3.1.	The	following	algorithms	are	supported:

														1.	"ES256"	[RFC7518]														1.	"ES256"	[RFC7518]
														2.	"RS256"	[RFC7518]														2.	"RS256"	[RFC7518]
														3.	"PS256"	[RFC7518]														3.	"PS256"	[RFC7518]
														4.	"ED256"	[FIDOEcdaaAlgorithm]														4.	"ED256"	[FIDOEcdaaAlgorithm]
														5.	"ED512"	[FIDOEcdaaAlgorithm]														5.	"ED512"	[FIDOEcdaaAlgorithm]

								sig								sig

																A	byte	string	containing	the	attestation	signature,	in	the																A	byte	string	containing	the	attestation	signature,	in	the
																form	of	a	TPMT_SIGNATURE	structure	as	specified	in																form	of	a	TPMT_SIGNATURE	structure	as	specified	in
																[TPMv2-Part2]	section	11.3.4.																[TPMv2-Part2]	section	11.3.4.

								certInfo								certInfo

																A	byte	string	containing	the	structure	over	which	the																A	byte	string	containing	the	structure	over	which	the
																attestation	signature	was	computed.	This	is	a	TPMS_ATTEST																attestation	signature	was	computed.	This	is	a	TPMS_ATTEST
																structure	as	specified	in	[TPMv2-Part2]	section	10.12.8.																structure	as	specified	in	[TPMv2-Part2]	section	10.12.8.

								pubArea								pubArea

																The	TPMT_PUBLIC	structure	(see	[TPMv2-Part2]	section																The	TPMT_PUBLIC	structure	(see	[TPMv2-Part2]	section
																12.2.4)	used	by	the	TPM	to	represent	the	credential	public																12.2.4)	used	by	the	TPM	to	represent	the	credential	public
																key.																key.

			Signing	procedure			Signing	procedure

										Concatenate	the	given	authenticatorData	and	clientDataHash	as										Concatenate	the	given	authenticatorData	and	clientDataHash	as
										shown	in	5.2.3	Generating	a	signature	to	form	attToBeSigned.										shown	in	5.2.3	Generating	a	signature	to	form	attToBeSigned.

										Generate	a	signature	using	the	procedure	specified	in										Generate	a	signature	using	the	procedure	specified	in
										[TPMv2-Part3]	Section	18.2,	using	the	attestation	private	key										[TPMv2-Part3]	Section	18.2,	using	the	attestation	private	key
										and	setting	the	qualifyingData	parameter	to	attToBeSigned.										and	setting	the	qualifyingData	parameter	to	attToBeSigned.

										Set	the	pubArea	field	to	the	public	area	of	the	credential										Set	the	pubArea	field	to	the	public	area	of	the	credential
										public	key,	the	certInfo	field	to	the	output	parameter	of	the										public	key,	the	certInfo	field	to	the	output	parameter	of	the
										same	name,	and	the	sig	field	to	the	signature	obtained	from	the										same	name,	and	the	sig	field	to	the	signature	obtained	from	the										same	name,	and	the	sig	field	to	the	signature	obtained	from	the										same	name,	and	the	sig	field	to	the	signature	obtained	from	the
										above	procedure.										above	procedure.

			Verification	procedure			Verification	procedure

										Verify	that	the	public	key	specified	by	the	parameters	and										Verify	that	the	public	key	specified	by	the	parameters	and
										unique	fields	of	pubArea	is	identical	to	the	public	key										unique	fields	of	pubArea	is	identical	to	the	public	key
										contained	in	the	attestation	data	inside	the	claimed										contained	in	the	attestation	data	inside	the	claimed
										authenticatorData										authenticatorData

										Concatenate	the	given	authenticatorData	and	clientDataHash	as										Concatenate	the	given	authenticatorData	and	clientDataHash	as
36/72



/Users/jehodges/Documents/work/standards/W3C/webauthn/index-vgb-u2f-attestation-0d0fcea.txt,	Top	line:	2224

										shown	in	5.2.3	Generating	a	signature	to	form	attToBeSigned.										shown	in	5.2.3	Generating	a	signature	to	form	attToBeSigned.

										Validate	that	certifyInfo	is	valid:										Validate	that	certifyInfo	is	valid:										Validate	that	certifyInfo	is	valid:										Validate	that	certifyInfo	is	valid:

										+	Verify	that	magic	is	set	to	TPM_GENERATED_VALUE.										+	Verify	that	magic	is	set	to	TPM_GENERATED_VALUE.
										+	Verify	that	type	is	set	to	TPM_ST_ATTEST_CERTIFY.										+	Verify	that	type	is	set	to	TPM_ST_ATTEST_CERTIFY.
										+	Verify	that	extraData	is	set	to	attToBeSigned.										+	Verify	that	extraData	is	set	to	attToBeSigned.
										+	Verify	that	attested	contains	a	TPMS_CERTIFY_INFO	structure,										+	Verify	that	attested	contains	a	TPMS_CERTIFY_INFO	structure,
												whose	name	field	contains	a	valid	Name	for	publicArea,	as												whose	name	field	contains	a	valid	Name	for	publicArea,	as												whose	name	field	contains	a	valid	Name	for	publicArea,	as												whose	name	field	contains	a	valid	Name	for	publicArea,	as
												computed	using	the	algorithm	in	the	nameAlg	field	of												computed	using	the	algorithm	in	the	nameAlg	field	of
												publicArea	using	the	procedure	specified	in	[TPMv2-Part1]												publicArea	using	the	procedure	specified	in	[TPMv2-Part1]												publicArea	using	the	procedure	specified	in	[TPMv2-Part1]												publicArea	using	the	procedure	specified	in	[TPMv2-Part1]
												section	16.												section	16.

										If	both	x5c	and	daaKey	are	present,	terminate	this	procedure										If	both	x5c	and	daaKey	are	present,	terminate	this	procedure
										with	an	error.										with	an	error.

										If	x5c	is	present,	this	indicates	that	the	attestation	type	is										If	x5c	is	present,	this	indicates	that	the	attestation	type	is
										not	DAA.	In	this	case:										not	DAA.	In	this	case:

										+	Verify	the	signature	is	a	valid	signature	over	certifyInfo										+	Verify	the	signature	is	a	valid	signature	over	certifyInfo										+	Verify	the	signature	is	a	valid	signature	over	certifyInfo										+	Verify	the	signature	is	a	valid	signature	over	certifyInfo										+	Verify	the	signature	is	a	valid	signature	over	certifyInfo
												using	the	attestation	public	key	in	x5c	with	the	algorithm												using	the	attestation	public	key	in	x5c	with	the	algorithm												using	the	attestation	public	key	in	x5c	with	the	algorithm												using	the	attestation	public	key	in	x5c	with	the	algorithm
												specified	in	alg.												specified	in	alg.												specified	in	alg.												specified	in	alg.
										+	Verify	that	x5c	meets	the	requirements	in	7.3.1	TPM										+	Verify	that	x5c	meets	the	requirements	in	7.3.1	TPM
												attestation	statement	certificate	requirements.												attestation	statement	certificate	requirements.
										+	If	x5c	contains	an	extension	with	OID	1	3	6	1	4	1	45724	1	1	4										+	If	x5c	contains	an	extension	with	OID	1	3	6	1	4	1	45724	1	1	4
												(id-fido-gen-ce-aaguid)	verify	that	the	value	of	this												(id-fido-gen-ce-aaguid)	verify	that	the	value	of	this
												extension	matches	the	AAGUID	in	the	claimed	authenticatorData.												extension	matches	the	AAGUID	in	the	claimed	authenticatorData.
										+	If	successful,	return	attestation	type	Privacy	CA	and	trust										+	If	successful,	return	attestation	type	Privacy	CA	and	trust
												path	x5c.												path	x5c.

										If	daaKey	is	present,	then	the	attestation	type	is	DAA.										If	daaKey	is	present,	then	the	attestation	type	is	DAA.

										+	Verify	that	alg	is	"ED256"	or	"ED512".										+	Verify	that	alg	is	"ED256"	or	"ED512".
										+	Perform	DAA-Verify	on	signature	to	verify	that	it	is	a	valid										+	Perform	DAA-Verify	on	signature	to	verify	that	it	is	a	valid										+	Perform	DAA-Verify	on	signature	to	verify	that	it	is	a	valid										+	Perform	DAA-Verify	on	signature	to	verify	that	it	is	a	valid
												signature	over	certifyInfo	(see	[FIDOEcdaaAlgorithm]).												signature	over	certifyInfo	(see	[FIDOEcdaaAlgorithm]).												signature	over	certifyInfo	(see	[FIDOEcdaaAlgorithm]).												signature	over	certifyInfo	(see	[FIDOEcdaaAlgorithm]).
										+	If	successful,	return	attestation	type	DAA	and	trust	path										+	If	successful,	return	attestation	type	DAA	and	trust	path
												daaKey.												daaKey.

				7.3.1.	TPM	attestation	statement	certificate	requirements				7.3.1.	TPM	attestation	statement	certificate	requirements

			TPM	attestation	certificate	MUST	have	the	following	fields/extensions:			TPM	attestation	certificate	MUST	have	the	following	fields/extensions:
					*	Version	must	be	set	to	3.					*	Version	must	be	set	to	3.
					*	Subject	field	MUST	be	set	to	empty.					*	Subject	field	MUST	be	set	to	empty.
					*	The	Subject	Alternative	Name	extension	must	be	set	as	defined	in					*	The	Subject	Alternative	Name	extension	must	be	set	as	defined	in
							[TPMv2-EK-Profile]	section	3.2.9.							[TPMv2-EK-Profile]	section	3.2.9.
					*	The	Extended	Key	Usage	extension	MUST	contain	the					*	The	Extended	Key	Usage	extension	MUST	contain	the
							"joint-iso-itu-t(2)	internationalorganizations(23)	133	tcg-kp(8)							"joint-iso-itu-t(2)	internationalorganizations(23)	133	tcg-kp(8)
							tcg-kp-AIKCertificate(3)"	OID.							tcg-kp-AIKCertificate(3)"	OID.
					*	The	Basic	Constraints	extension	MUST	have	the	CA	component	set	to					*	The	Basic	Constraints	extension	MUST	have	the	CA	component	set	to
							false.							false.
					*	An	Authority	Information	Access	(AIA)	extension	with	entry					*	An	Authority	Information	Access	(AIA)	extension	with	entry
							id-ad-ocsp	and	a	CRL	Distribution	Point	extension	[RFC5280]	are							id-ad-ocsp	and	a	CRL	Distribution	Point	extension	[RFC5280]	are
							both	optional	as	the	status	of	many	attestation	certificates	is							both	optional	as	the	status	of	many	attestation	certificates	is
							available	through	metadata	services.	See,	for	example,	the	FIDO							available	through	metadata	services.	See,	for	example,	the	FIDO
							Metadata	Service	[FIDOMetadataService].							Metadata	Service	[FIDOMetadataService].

		7.4.	Android	Key	Attestation	Statement	Format		7.4.	Android	Key	Attestation	Statement	Format

			When	the	Authenticator	in	question	is	a	platform-provided	Authenticator			When	the	Authenticator	in	question	is	a	platform-provided	Authenticator
			on	the	Android	"N"	or	later	platform,	the	attestation	statement	is			on	the	Android	"N"	or	later	platform,	the	attestation	statement	is
			based	on	the	Android	key	attestation.	In	these	cases,	the	attestation			based	on	the	Android	key	attestation.	In	these	cases,	the	attestation
			statement	is	produced	by	a	component	running	in	a	secure	operating			statement	is	produced	by	a	component	running	in	a	secure	operating

/Users/jehodges/Documents/work/standards/W3C/webauthn/index-vgb-u2f-attestation-dc90eab.txt,	Top	line:	2217

										shown	in	5.2.3	Generating	a	signature	to	form	attToBeSigned.										shown	in	5.2.3	Generating	a	signature	to	form	attToBeSigned.

										Validate	that	certInfo	is	valid:										Validate	that	certInfo	is	valid:

										+	Verify	that	magic	is	set	to	TPM_GENERATED_VALUE.										+	Verify	that	magic	is	set	to	TPM_GENERATED_VALUE.
										+	Verify	that	type	is	set	to	TPM_ST_ATTEST_CERTIFY.										+	Verify	that	type	is	set	to	TPM_ST_ATTEST_CERTIFY.
										+	Verify	that	extraData	is	set	to	attToBeSigned.										+	Verify	that	extraData	is	set	to	attToBeSigned.
										+	Verify	that	attested	contains	a	TPMS_CERTIFY_INFO	structure,										+	Verify	that	attested	contains	a	TPMS_CERTIFY_INFO	structure,
												whose	name	field	contains	a	valid	Name	for	pubArea,	as												whose	name	field	contains	a	valid	Name	for	pubArea,	as
												computed	using	the	algorithm	in	the	nameAlg	field	of	pubArea												computed	using	the	algorithm	in	the	nameAlg	field	of	pubArea												computed	using	the	algorithm	in	the	nameAlg	field	of	pubArea
												using	the	procedure	specified	in	[TPMv2-Part1]	section	16.												using	the	procedure	specified	in	[TPMv2-Part1]	section	16.												using	the	procedure	specified	in	[TPMv2-Part1]	section	16.

										If	both	x5c	and	daaKey	are	present,	terminate	this	procedure										If	both	x5c	and	daaKey	are	present,	terminate	this	procedure
										with	an	error.										with	an	error.

										If	x5c	is	present,	this	indicates	that	the	attestation	type	is										If	x5c	is	present,	this	indicates	that	the	attestation	type	is
										not	DAA.	In	this	case:										not	DAA.	In	this	case:

										+	Verify	the	sig	is	a	valid	signature	over	certInfo	using	the										+	Verify	the	sig	is	a	valid	signature	over	certInfo	using	the										+	Verify	the	sig	is	a	valid	signature	over	certInfo	using	the
												attestation	public	key	in	x5c	with	the	algorithm	specified	in												attestation	public	key	in	x5c	with	the	algorithm	specified	in												attestation	public	key	in	x5c	with	the	algorithm	specified	in
												alg.												alg.
										+	Verify	that	x5c	meets	the	requirements	in	7.3.1	TPM										+	Verify	that	x5c	meets	the	requirements	in	7.3.1	TPM
												attestation	statement	certificate	requirements.												attestation	statement	certificate	requirements.
										+	If	x5c	contains	an	extension	with	OID	1	3	6	1	4	1	45724	1	1	4										+	If	x5c	contains	an	extension	with	OID	1	3	6	1	4	1	45724	1	1	4
												(id-fido-gen-ce-aaguid)	verify	that	the	value	of	this												(id-fido-gen-ce-aaguid)	verify	that	the	value	of	this
												extension	matches	the	AAGUID	in	the	claimed	authenticatorData.												extension	matches	the	AAGUID	in	the	claimed	authenticatorData.
										+	If	successful,	return	attestation	type	Privacy	CA	and	trust										+	If	successful,	return	attestation	type	Privacy	CA	and	trust
												path	x5c.												path	x5c.

										If	daaKey	is	present,	then	the	attestation	type	is	DAA.										If	daaKey	is	present,	then	the	attestation	type	is	DAA.

										+	Verify	that	alg	is	"ED256"	or	"ED512".										+	Verify	that	alg	is	"ED256"	or	"ED512".
										+	Perform	DAA-Verify	on	sig	to	verify	that	it	is	a	valid										+	Perform	DAA-Verify	on	sig	to	verify	that	it	is	a	valid
												signature	over	certInfo	(see	[FIDOEcdaaAlgorithm]).												signature	over	certInfo	(see	[FIDOEcdaaAlgorithm]).
										+	If	successful,	return	attestation	type	DAA	and	trust	path										+	If	successful,	return	attestation	type	DAA	and	trust	path
												daaKey.												daaKey.

				7.3.1.	TPM	attestation	statement	certificate	requirements				7.3.1.	TPM	attestation	statement	certificate	requirements

			TPM	attestation	certificate	MUST	have	the	following	fields/extensions:			TPM	attestation	certificate	MUST	have	the	following	fields/extensions:
					*	Version	must	be	set	to	3.					*	Version	must	be	set	to	3.
					*	Subject	field	MUST	be	set	to	empty.					*	Subject	field	MUST	be	set	to	empty.
					*	The	Subject	Alternative	Name	extension	must	be	set	as	defined	in					*	The	Subject	Alternative	Name	extension	must	be	set	as	defined	in
							[TPMv2-EK-Profile]	section	3.2.9.							[TPMv2-EK-Profile]	section	3.2.9.
					*	The	Extended	Key	Usage	extension	MUST	contain	the					*	The	Extended	Key	Usage	extension	MUST	contain	the
							"joint-iso-itu-t(2)	internationalorganizations(23)	133	tcg-kp(8)							"joint-iso-itu-t(2)	internationalorganizations(23)	133	tcg-kp(8)
							tcg-kp-AIKCertificate(3)"	OID.							tcg-kp-AIKCertificate(3)"	OID.
					*	The	Basic	Constraints	extension	MUST	have	the	CA	component	set	to					*	The	Basic	Constraints	extension	MUST	have	the	CA	component	set	to
							false.							false.
					*	An	Authority	Information	Access	(AIA)	extension	with	entry					*	An	Authority	Information	Access	(AIA)	extension	with	entry
							id-ad-ocsp	and	a	CRL	Distribution	Point	extension	[RFC5280]	are							id-ad-ocsp	and	a	CRL	Distribution	Point	extension	[RFC5280]	are
							both	optional	as	the	status	of	many	attestation	certificates	is							both	optional	as	the	status	of	many	attestation	certificates	is
							available	through	metadata	services.	See,	for	example,	the	FIDO							available	through	metadata	services.	See,	for	example,	the	FIDO
							Metadata	Service	[FIDOMetadataService].							Metadata	Service	[FIDOMetadataService].

		7.4.	Android	Key	Attestation	Statement	Format		7.4.	Android	Key	Attestation	Statement	Format

			When	the	Authenticator	in	question	is	a	platform-provided	Authenticator			When	the	Authenticator	in	question	is	a	platform-provided	Authenticator
			on	the	Android	"N"	or	later	platform,	the	attestation	statement	is			on	the	Android	"N"	or	later	platform,	the	attestation	statement	is
			based	on	the	Android	key	attestation.	In	these	cases,	the	attestation			based	on	the	Android	key	attestation.	In	these	cases,	the	attestation
			statement	is	produced	by	a	component	running	in	a	secure	operating			statement	is	produced	by	a	component	running	in	a	secure	operating

37/72



/Users/jehodges/Documents/work/standards/W3C/webauthn/index-vgb-u2f-attestation-0d0fcea.txt,	Top	line:	2286

			environment,	but	the	authenticatorData	is	produced	outside	this			environment,	but	the	authenticatorData	is	produced	outside	this
			environment.	The	Relying	Party	is	expected	to	check	that	the	contents			environment.	The	Relying	Party	is	expected	to	check	that	the	contents
			of	authenticatorData	are	consistent	with	the	fields	of	the	attestation			of	authenticatorData	are	consistent	with	the	fields	of	the	attestation
			certificate's	extension	data.			certificate's	extension	data.

			Attestation	format	identifier			Attestation	format	identifier

										android-key										android-key

			Attestation	types	supported			Attestation	types	supported

										Basic										Basic

			Syntax			Syntax

										An	Android	key	attestation	statement	is	a	CBOR	byte	string										An	Android	key	attestation	statement	is	a	CBOR	byte	string
										containing	the	Android	attestation	statement,	which	is	a	series										containing	the	Android	attestation	statement,	which	is	a	series
										of	DER	encoded	X.509	certificates.	See	the	Android	developer										of	DER	encoded	X.509	certificates.	See	the	Android	developer
										documentation.										documentation.

			Signing	procedure			Signing	procedure

										Concatenate	the	given	authenticatorData	and	clientDataHash	as										Concatenate	the	given	authenticatorData	and	clientDataHash	as
										shown	in	5.2.3	Generating	a	signature	to	form	attToBeSigned.										shown	in	5.2.3	Generating	a	signature	to	form	attToBeSigned.

										Request	a	Android	Key	Attestation	by	calling										Request	a	Android	Key	Attestation	by	calling
										"keyStore.getCertificateChain(myKeyUUID)")	providing										"keyStore.getCertificateChain(myKeyUUID)")	providing
										attToBeSigned	as	the	challenge	value	(e.g.,	by	using										attToBeSigned	as	the	challenge	value	(e.g.,	by	using
										setAttestationChallenge),	and	set	the	attestation	statement	to										setAttestationChallenge),	and	set	the	attestation	statement	to
										the	returned	value.										the	returned	value.

			Verification	procedure			Verification	procedure

										Verification	is	performed	as	follows:										Verification	is	performed	as	follows:

										+	Verify	that	the	public	key	in	the	first	certificate	in	the										+	Verify	that	the	public	key	in	the	first	certificate	in	the
												series	of	certificates	represented	by	the	signature	matches												series	of	certificates	represented	by	the	signature	matches
												the	credential	public	key	in	the	attestation	data	field	of	the												the	credential	public	key	in	the	attestation	data	field	of	the
												given	authenticatorData.												given	authenticatorData.
										+	Verify	that	in	the	attestation	certificate	extension	data:										+	Verify	that	in	the	attestation	certificate	extension	data:
															o	The	value	of	the	attestationChallenge	field	is	identical															o	The	value	of	the	attestationChallenge	field	is	identical
																	to	the	concatenation	of	the	claimed	authenticatorData	and																	to	the	concatenation	of	the	claimed	authenticatorData	and
																	clientDataHash.																	clientDataHash.
															o	The	AuthorizationList.allApplications	field	is	not															o	The	AuthorizationList.allApplications	field	is	not
																	present,	since	ScopedCredentials	must	be	bound	to	the	RP																	present,	since	ScopedCredentials	must	be	bound	to	the	RP
																	ID.																	ID.
															o	The	value	in	the	AuthorizationList.origin	field	is	equal															o	The	value	in	the	AuthorizationList.origin	field	is	equal
																	to	KM_TAG_GENERATED.																	to	KM_TAG_GENERATED.
															o	The	value	in	the	AuthorizationList.purpose	field	is	equal															o	The	value	in	the	AuthorizationList.purpose	field	is	equal
																	to	KM_PURPOSE_SIGN.																	to	KM_PURPOSE_SIGN.
										+	If	successful,	return	attestation	type	Basic	with	the	trust										+	If	successful,	return	attestation	type	Basic	with	the	trust
												path	set	to	the	entire	attestation	statement.												path	set	to	the	entire	attestation	statement.

		7.5.	Android	SafetyNet	Attestation	Statement	Format		7.5.	Android	SafetyNet	Attestation	Statement	Format

			When	the	Authenticator	in	question	is	a	platform-provided	Authenticator			When	the	Authenticator	in	question	is	a	platform-provided	Authenticator
			on	certain	Android	platforms,	the	attestation	statement	is	based	on	the			on	certain	Android	platforms,	the	attestation	statement	is	based	on	the
			SafetyNet	API.	In	this	case	the	authenticator	data	is	completely			SafetyNet	API.	In	this	case	the	authenticator	data	is	completely
			controlled	by	the	caller	of	the	SafetyNet	API	(typically	an	application			controlled	by	the	caller	of	the	SafetyNet	API	(typically	an	application
			running	on	the	Android	platform)	and	the	attestation	statement	only			running	on	the	Android	platform)	and	the	attestation	statement	only
			provides	some	statements	about	the	health	of	the	platform	and	the			provides	some	statements	about	the	health	of	the	platform	and	the
			identity	of	the	calling	application.			identity	of	the	calling	application.

/Users/jehodges/Documents/work/standards/W3C/webauthn/index-vgb-u2f-attestation-dc90eab.txt,	Top	line:	2278

			environment,	but	the	authenticatorData	is	produced	outside	this			environment,	but	the	authenticatorData	is	produced	outside	this
			environment.	The	Relying	Party	is	expected	to	check	that	the	contents			environment.	The	Relying	Party	is	expected	to	check	that	the	contents
			of	authenticatorData	are	consistent	with	the	fields	of	the	attestation			of	authenticatorData	are	consistent	with	the	fields	of	the	attestation
			certificate's	extension	data.			certificate's	extension	data.

			Attestation	format	identifier			Attestation	format	identifier

										android-key										android-key

			Attestation	types	supported			Attestation	types	supported

										Basic										Basic

			Syntax			Syntax

										An	Android	key	attestation	statement	is	a	CBOR	byte	string										An	Android	key	attestation	statement	is	a	CBOR	byte	string
										containing	the	Android	attestation	statement,	which	is	a	series										containing	the	Android	attestation	statement,	which	is	a	series
										of	DER	encoded	X.509	certificates.	See	the	Android	developer										of	DER	encoded	X.509	certificates.	See	the	Android	developer
										documentation.										documentation.

			Signing	procedure			Signing	procedure

										Concatenate	the	given	authenticatorData	and	clientDataHash	as										Concatenate	the	given	authenticatorData	and	clientDataHash	as
										shown	in	5.2.3	Generating	a	signature	to	form	attToBeSigned.										shown	in	5.2.3	Generating	a	signature	to	form	attToBeSigned.

										Request	a	Android	Key	Attestation	by	calling										Request	a	Android	Key	Attestation	by	calling
										"keyStore.getCertificateChain(myKeyUUID)")	providing										"keyStore.getCertificateChain(myKeyUUID)")	providing
										attToBeSigned	as	the	challenge	value	(e.g.,	by	using										attToBeSigned	as	the	challenge	value	(e.g.,	by	using
										setAttestationChallenge),	and	set	the	attestation	statement	to										setAttestationChallenge),	and	set	the	attestation	statement	to
										the	returned	value.										the	returned	value.

			Verification	procedure			Verification	procedure

										Verification	is	performed	as	follows:										Verification	is	performed	as	follows:

										+	Verify	that	the	public	key	in	the	first	certificate	in	the										+	Verify	that	the	public	key	in	the	first	certificate	in	the
												series	of	certificates	represented	by	the	signature	matches												series	of	certificates	represented	by	the	signature	matches
												the	credential	public	key	in	the	attestation	data	field	of	the												the	credential	public	key	in	the	attestation	data	field	of	the
												given	authenticatorData.												given	authenticatorData.
										+	Verify	that	in	the	attestation	certificate	extension	data:										+	Verify	that	in	the	attestation	certificate	extension	data:
															o	The	value	of	the	attestationChallenge	field	is	identical															o	The	value	of	the	attestationChallenge	field	is	identical
																	to	the	concatenation	of	the	claimed	authenticatorData	and																	to	the	concatenation	of	the	claimed	authenticatorData	and
																	clientDataHash.																	clientDataHash.
															o	The	AuthorizationList.allApplications	field	is	not															o	The	AuthorizationList.allApplications	field	is	not
																	present,	since	ScopedCredentials	must	be	bound	to	the	RP																	present,	since	ScopedCredentials	must	be	bound	to	the	RP
																	ID.																	ID.
															o	The	value	in	the	AuthorizationList.origin	field	is	equal															o	The	value	in	the	AuthorizationList.origin	field	is	equal
																	to	KM_TAG_GENERATED.																	to	KM_TAG_GENERATED.
															o	The	value	in	the	AuthorizationList.purpose	field	is	equal															o	The	value	in	the	AuthorizationList.purpose	field	is	equal
																	to	KM_PURPOSE_SIGN.																	to	KM_PURPOSE_SIGN.
										+	If	successful,	return	attestation	type	Basic	with	the	trust										+	If	successful,	return	attestation	type	Basic	with	the	trust
												path	set	to	the	entire	attestation	statement.												path	set	to	the	entire	attestation	statement.

		7.5.	Android	SafetyNet	Attestation	Statement	Format		7.5.	Android	SafetyNet	Attestation	Statement	Format

			When	the	Authenticator	in	question	is	a	platform-provided	Authenticator			When	the	Authenticator	in	question	is	a	platform-provided	Authenticator
			on	certain	Android	platforms,	the	attestation	statement	is	based	on	the			on	certain	Android	platforms,	the	attestation	statement	is	based	on	the
			SafetyNet	API.	In	this	case	the	authenticator	data	is	completely			SafetyNet	API.	In	this	case	the	authenticator	data	is	completely
			controlled	by	the	caller	of	the	SafetyNet	API	(typically	an	application			controlled	by	the	caller	of	the	SafetyNet	API	(typically	an	application
			running	on	the	Android	platform)	and	the	attestation	statement	only			running	on	the	Android	platform)	and	the	attestation	statement	only
			provides	some	statements	about	the	health	of	the	platform	and	the			provides	some	statements	about	the	health	of	the	platform	and	the
			identity	of	the	calling	application.			identity	of	the	calling	application.

38/72



/Users/jehodges/Documents/work/standards/W3C/webauthn/index-vgb-u2f-attestation-0d0fcea.txt,	Top	line:	2348

			Attestation	format	identifier			Attestation	format	identifier

										android-safetynet										android-safetynet

			Attestation	types	supported			Attestation	types	supported

										Basic										Basic

			Syntax			Syntax

										An	Android	Attestation	statement	is	a	CBOR	map	with	the										An	Android	Attestation	statement	is	a	CBOR	map	with	the
										following	fields:										following	fields:

								version								version								version

																A	text	string	indicating	the	version	number	of	Google	Play																A	text	string	indicating	the	version	number	of	Google	Play
																Services	responsible	for	providing	the	SafetyNet	API.																Services	responsible	for	providing	the	SafetyNet	API.

								safetyNetResponse								safetyNetResponse								safetyNetResponse

																The	value	returned	by	the	above	SafetyNet	API.	This	value																The	value	returned	by	the	above	SafetyNet	API.	This	value
																is	a	JWS	[RFC7515]	object	(see	SafetyNet	online																is	a	JWS	[RFC7515]	object	(see	SafetyNet	online
																documentation)	in	Compact	Serialization.																documentation)	in	Compact	Serialization.

			Signing	procedure			Signing	procedure

										Concatenate	the	given	authenticatorData	and	clientDataHash	as										Concatenate	the	given	authenticatorData	and	clientDataHash	as
										shown	in	5.2.3	Generating	a	signature	to	form	attToBeSigned.										shown	in	5.2.3	Generating	a	signature	to	form	attToBeSigned.

										Request	a	SafetyNet	attestation,	providing	attToBeSigned	as	the										Request	a	SafetyNet	attestation,	providing	attToBeSigned	as	the
										nonce	value.	Set	safetyNetResponse	to	the	result,	and	version	to										nonce	value.	Set	safetyNetResponse	to	the	result,	and	version	to										nonce	value.	Set	safetyNetResponse	to	the	result,	and	version	to										nonce	value.	Set	safetyNetResponse	to	the	result,	and	version	to										nonce	value.	Set	safetyNetResponse	to	the	result,	and	version	to
										the	version	of	Google	Play	Services	running	in	the										the	version	of	Google	Play	Services	running	in	the										the	version	of	Google	Play	Services	running	in	the										the	version	of	Google	Play	Services	running	in	the
										authenticator.										authenticator.

			Verification	procedure			Verification	procedure

										Verification	is	performed	as	follows:										Verification	is	performed	as	follows:

										+	Verify	that	safetyNetResponse	is	a	valid	SafetyNet	response	of										+	Verify	that	safetyNetResponse	is	a	valid	SafetyNet	response	of										+	Verify	that	safetyNetResponse	is	a	valid	SafetyNet	response	of										+	Verify	that	safetyNetResponse	is	a	valid	SafetyNet	response	of
												version	version.												version	version.												version	version.												version	version.
										+	Verify	that	the	nonce	in	the	safetyNetResponse	is	identical	to										+	Verify	that	the	nonce	in	the	safetyNetResponse	is	identical	to										+	Verify	that	the	nonce	in	the	safetyNetResponse	is	identical	to
												the	concatenation	of	the	claimed	authenticatorData	and												the	concatenation	of	the	claimed	authenticatorData	and												the	concatenation	of	the	claimed	authenticatorData	and												the	concatenation	of	the	claimed	authenticatorData	and
												clientDataHash.												clientDataHash.
										+	Verify	that	the	attestation	certificate	is	issued	to	the										+	Verify	that	the	attestation	certificate	is	issued	to	the
												hostname	"attest.android.com"	(see	SafetyNet	online												hostname	"attest.android.com"	(see	SafetyNet	online
												documentation).												documentation).
										+	Verify	that	the	ctsProfileMatch	attribute	in	the	payload	of										+	Verify	that	the	ctsProfileMatch	attribute	in	the	payload	of
												safetyNetResponse	is	true.												safetyNetResponse	is	true.												safetyNetResponse	is	true.												safetyNetResponse	is	true.
										+	If	successful,	return	attestation	type	Basic	with	the	trust										+	If	successful,	return	attestation	type	Basic	with	the	trust
												path	set	to	the	above	attestation	certificate.												path	set	to	the	above	attestation	certificate.

		7.6.	FIDO	U2F	Attestation	Statement	Format		7.6.	FIDO	U2F	Attestation	Statement	Format

			This	attestation	statement	format	is	used	with	FIDO	U2F	authenticators			This	attestation	statement	format	is	used	with	FIDO	U2F	authenticators
			using	the	formats	defined	in	[FIDO-U2F-Message-Formats].			using	the	formats	defined	in	[FIDO-U2F-Message-Formats].

			Attestation	format	identifier			Attestation	format	identifier

										fido-u2f										fido-u2f

			Attestation	types	supported			Attestation	types	supported

/Users/jehodges/Documents/work/standards/W3C/webauthn/index-vgb-u2f-attestation-dc90eab.txt,	Top	line:	2340

			Attestation	format	identifier			Attestation	format	identifier

										android-safetynet										android-safetynet

			Attestation	types	supported			Attestation	types	supported

										Basic										Basic

			Syntax			Syntax

										An	Android	Attestation	statement	is	a	CBOR	map	with	the										An	Android	Attestation	statement	is	a	CBOR	map	with	the
										following	fields:										following	fields:

								ver								ver

																A	text	string	indicating	the	version	number	of	Google	Play																A	text	string	indicating	the	version	number	of	Google	Play
																Services	responsible	for	providing	the	SafetyNet	API.																Services	responsible	for	providing	the	SafetyNet	API.

								response								response								response

																The	value	returned	by	the	above	SafetyNet	API.	This	value																The	value	returned	by	the	above	SafetyNet	API.	This	value
																is	a	JWS	[RFC7515]	object	(see	SafetyNet	online																is	a	JWS	[RFC7515]	object	(see	SafetyNet	online
																documentation)	in	Compact	Serialization.																documentation)	in	Compact	Serialization.

			Signing	procedure			Signing	procedure

										Concatenate	the	given	authenticatorData	and	clientDataHash	as										Concatenate	the	given	authenticatorData	and	clientDataHash	as
										shown	in	5.2.3	Generating	a	signature	to	form	attToBeSigned.										shown	in	5.2.3	Generating	a	signature	to	form	attToBeSigned.

										Request	a	SafetyNet	attestation,	providing	attToBeSigned	as	the										Request	a	SafetyNet	attestation,	providing	attToBeSigned	as	the
										nonce	value.	Set	response	to	the	result,	and	ver	to	the	version										nonce	value.	Set	response	to	the	result,	and	ver	to	the	version										nonce	value.	Set	response	to	the	result,	and	ver	to	the	version										nonce	value.	Set	response	to	the	result,	and	ver	to	the	version
										of	Google	Play	Services	running	in	the	authenticator.										of	Google	Play	Services	running	in	the	authenticator.										of	Google	Play	Services	running	in	the	authenticator.

			Verification	procedure			Verification	procedure

										Verification	is	performed	as	follows:										Verification	is	performed	as	follows:

										+	Verify	that	response	is	a	valid	SafetyNet	response	of	version										+	Verify	that	response	is	a	valid	SafetyNet	response	of	version										+	Verify	that	response	is	a	valid	SafetyNet	response	of	version										+	Verify	that	response	is	a	valid	SafetyNet	response	of	version										+	Verify	that	response	is	a	valid	SafetyNet	response	of	version
												ver.												ver.
										+	Verify	that	the	nonce	in	the	response	is	identical	to	the										+	Verify	that	the	nonce	in	the	response	is	identical	to	the										+	Verify	that	the	nonce	in	the	response	is	identical	to	the
												concatenation	of	the	claimed	authenticatorData	and												concatenation	of	the	claimed	authenticatorData	and
												clientDataHash.												clientDataHash.
										+	Verify	that	the	attestation	certificate	is	issued	to	the										+	Verify	that	the	attestation	certificate	is	issued	to	the
												hostname	"attest.android.com"	(see	SafetyNet	online												hostname	"attest.android.com"	(see	SafetyNet	online
												documentation).												documentation).
										+	Verify	that	the	ctsProfileMatch	attribute	in	the	payload	of										+	Verify	that	the	ctsProfileMatch	attribute	in	the	payload	of
												response	is	true.												response	is	true.												response	is	true.												response	is	true.
										+	If	successful,	return	attestation	type	Basic	with	the	trust										+	If	successful,	return	attestation	type	Basic	with	the	trust
												path	set	to	the	above	attestation	certificate.												path	set	to	the	above	attestation	certificate.

		7.6.	FIDO	U2F	Attestation	Statement	Format		7.6.	FIDO	U2F	Attestation	Statement	Format

			This	attestation	statement	format	is	used	with	FIDO	U2F	authenticators			This	attestation	statement	format	is	used	with	FIDO	U2F	authenticators
			using	the	formats	defined	in	[FIDO-U2F-Message-Formats].			using	the	formats	defined	in	[FIDO-U2F-Message-Formats].

			Attestation	format	identifier			Attestation	format	identifier

										fido-u2f										fido-u2f

			Attestation	types	supported			Attestation	types	supported
39/72



/Users/jehodges/Documents/work/standards/W3C/webauthn/index-vgb-u2f-attestation-0d0fcea.txt,	Top	line:	2410

										Basic										Basic

			Syntax			Syntax

										A	FIDO	U2F	attestation	statement	is	a	CBOR	map	with	the										A	FIDO	U2F	attestation	statement	is	a	CBOR	map	with	the
										following	fields:										following	fields:

								x5c								x5c

																A	byte	string	representing	the	U2F	attestation	certificate																A	byte	string	representing	the	U2F	attestation	certificate
																used	for	the	attestation,	encoded	in	X.509	format.																used	for	the	attestation,	encoded	in	X.509	format.

								signature								signature								signature

																A	byte	string	containing	the	attestation	signature.																A	byte	string	containing	the	attestation	signature.

			Signing	procedure			Signing	procedure

										If	the	credential	public	key	of	the	given	credential	is	not	of										If	the	credential	public	key	of	the	given	credential	is	not	of
										algorithm	"ES256",	stop	and	return	an	error.										algorithm	"ES256",	stop	and	return	an	error.

										Concatenate	the	given	authenticatorData	and	clientDataHash	as										Concatenate	the	given	authenticatorData	and	clientDataHash	as
										shown	in	5.2.3	Generating	a	signature	to	form	attToBeSigned.										shown	in	5.2.3	Generating	a	signature	to	form	attToBeSigned.
										Compute	the	SHA-256	hash	of	attToBeSigned	and	call	the	result										Compute	the	SHA-256	hash	of	attToBeSigned	and	call	the	result
										tbsHash.										tbsHash.

										Generate	a	signature	as	specified	in	[FIDO-U2F-Message-Formats]										Generate	a	signature	as	specified	in	[FIDO-U2F-Message-Formats]
										section	4.3,	with	the	application	parameter	set	to	the	SHA-256										section	4.3,	with	the	application	parameter	set	to	the	SHA-256
										hash	of	the	RP	ID	associated	with	the	given	credential,	the										hash	of	the	RP	ID	associated	with	the	given	credential,	the
										challenge	parameter	set	to	tbsHash,	and	the	key	handle	parameter										challenge	parameter	set	to	tbsHash,	and	the	key	handle	parameter
										set	to	the	credential	ID	of	the	given	credential.	Set	this	as										set	to	the	credential	ID	of	the	given	credential.	Set	this	as
										signature	and	set	the	attestation	certificate	of	the	attestation										signature	and	set	the	attestation	certificate	of	the	attestation										signature	and	set	the	attestation	certificate	of	the	attestation										signature	and	set	the	attestation	certificate	of	the	attestation
										public	key	as	x5c.										public	key	as	x5c.

			Verification	procedure			Verification	procedure

										Verification	is	performed	as	follows:										Verification	is	performed	as	follows:

										+	If	x5c	is	not	a	certificate	for	an	ECDSA	public	key	over	the										+	If	x5c	is	not	a	certificate	for	an	ECDSA	public	key	over	the
												P-256	curve,	stop	verification	and	return	an	error.												P-256	curve,	stop	verification	and	return	an	error.
										+	Concatenate	the	given	authenticatorData	and	clientDataHash	as										+	Concatenate	the	given	authenticatorData	and	clientDataHash	as
												shown	in	5.2.3	Generating	a	signature	to	form	attToBeSigned.												shown	in	5.2.3	Generating	a	signature	to	form	attToBeSigned.
												Compute	the	SHA-256	hash	of	attToBeSigned	and	call	the	result												Compute	the	SHA-256	hash	of	attToBeSigned	and	call	the	result
												tbsHash.												tbsHash.
										+	From	the	given	authenticatorData,	extract	the	claimed	RP	ID										+	From	the	given	authenticatorData,	extract	the	claimed	RP	ID
												hash,	the	claimed	credential	ID	and	the	claimed	credential												hash,	the	claimed	credential	ID	and	the	claimed	credential
												public	key.												public	key.
										+	Generate	the	claimed	to-be-signed	data	as	specified	in										+	Generate	the	claimed	to-be-signed	data	as	specified	in
												[FIDO-U2F-Message-Formats]	section	4.3,	with	the	application												[FIDO-U2F-Message-Formats]	section	4.3,	with	the	application
												parameter	set	to	the	claimed	RP	ID	hash,	the	challenge												parameter	set	to	the	claimed	RP	ID	hash,	the	challenge
												parameter	set	to	tbsHash,	the	key	handle	parameter	set	to	the												parameter	set	to	tbsHash,	the	key	handle	parameter	set	to	the
												claimed	credential	ID	of	the	given	credential,	and	the	user												claimed	credential	ID	of	the	given	credential,	and	the	user
												public	key	parameter	set	to	the	claimed	credential	public	key.												public	key	parameter	set	to	the	claimed	credential	public	key.
										+	Verify	that	the	signature	is	a	valid	ECDSA	P-256	signature										+	Verify	that	the	signature	is	a	valid	ECDSA	P-256	signature										+	Verify	that	the	signature	is	a	valid	ECDSA	P-256	signature										+	Verify	that	the	signature	is	a	valid	ECDSA	P-256	signature
												over	the	to-be-signed	data	constructed	above.												over	the	to-be-signed	data	constructed	above.												over	the	to-be-signed	data	constructed	above.												over	the	to-be-signed	data	constructed	above.
										+	If	successful,	return	attestation	type	Basic	with	the	trust										+	If	successful,	return	attestation	type	Basic	with	the	trust
												path	set	to	x5c.												path	set	to	x5c.

8.	WebAuthn	Extensions8.	WebAuthn	Extensions

			The	mechanism	for	generating	scoped	credentials,	as	well	as	requesting			The	mechanism	for	generating	scoped	credentials,	as	well	as	requesting

/Users/jehodges/Documents/work/standards/W3C/webauthn/index-vgb-u2f-attestation-dc90eab.txt,	Top	line:	2401

										Basic										Basic

			Syntax			Syntax

										A	FIDO	U2F	attestation	statement	is	a	CBOR	map	with	the										A	FIDO	U2F	attestation	statement	is	a	CBOR	map	with	the
										following	fields:										following	fields:

								x5c								x5c

																A	byte	string	representing	the	U2F	attestation	certificate																A	byte	string	representing	the	U2F	attestation	certificate
																used	for	the	attestation,	encoded	in	X.509	format.																used	for	the	attestation,	encoded	in	X.509	format.

								sig								sig

																A	byte	string	containing	the	attestation	signature.																A	byte	string	containing	the	attestation	signature.

			Signing	procedure			Signing	procedure

										If	the	credential	public	key	of	the	given	credential	is	not	of										If	the	credential	public	key	of	the	given	credential	is	not	of
										algorithm	"ES256",	stop	and	return	an	error.										algorithm	"ES256",	stop	and	return	an	error.

										Concatenate	the	given	authenticatorData	and	clientDataHash	as										Concatenate	the	given	authenticatorData	and	clientDataHash	as
										shown	in	5.2.3	Generating	a	signature	to	form	attToBeSigned.										shown	in	5.2.3	Generating	a	signature	to	form	attToBeSigned.
										Compute	the	SHA-256	hash	of	attToBeSigned	and	call	the	result										Compute	the	SHA-256	hash	of	attToBeSigned	and	call	the	result
										tbsHash.										tbsHash.

										Generate	a	signature	as	specified	in	[FIDO-U2F-Message-Formats]										Generate	a	signature	as	specified	in	[FIDO-U2F-Message-Formats]
										section	4.3,	with	the	application	parameter	set	to	the	SHA-256										section	4.3,	with	the	application	parameter	set	to	the	SHA-256
										hash	of	the	RP	ID	associated	with	the	given	credential,	the										hash	of	the	RP	ID	associated	with	the	given	credential,	the
										challenge	parameter	set	to	tbsHash,	and	the	key	handle	parameter										challenge	parameter	set	to	tbsHash,	and	the	key	handle	parameter
										set	to	the	credential	ID	of	the	given	credential.	Set	this	as										set	to	the	credential	ID	of	the	given	credential.	Set	this	as
										sig	and	set	the	attestation	certificate	of	the	attestation										sig	and	set	the	attestation	certificate	of	the	attestation
										public	key	as	x5c.										public	key	as	x5c.

			Verification	procedure			Verification	procedure

										Verification	is	performed	as	follows:										Verification	is	performed	as	follows:

										+	If	x5c	is	not	a	certificate	for	an	ECDSA	public	key	over	the										+	If	x5c	is	not	a	certificate	for	an	ECDSA	public	key	over	the
												P-256	curve,	stop	verification	and	return	an	error.												P-256	curve,	stop	verification	and	return	an	error.
										+	Concatenate	the	given	authenticatorData	and	clientDataHash	as										+	Concatenate	the	given	authenticatorData	and	clientDataHash	as
												shown	in	5.2.3	Generating	a	signature	to	form	attToBeSigned.												shown	in	5.2.3	Generating	a	signature	to	form	attToBeSigned.
												Compute	the	SHA-256	hash	of	attToBeSigned	and	call	the	result												Compute	the	SHA-256	hash	of	attToBeSigned	and	call	the	result
												tbsHash.												tbsHash.
										+	From	the	given	authenticatorData,	extract	the	claimed	RP	ID										+	From	the	given	authenticatorData,	extract	the	claimed	RP	ID
												hash,	the	claimed	credential	ID	and	the	claimed	credential												hash,	the	claimed	credential	ID	and	the	claimed	credential
												public	key.												public	key.
										+	Generate	the	claimed	to-be-signed	data	as	specified	in										+	Generate	the	claimed	to-be-signed	data	as	specified	in
												[FIDO-U2F-Message-Formats]	section	4.3,	with	the	application												[FIDO-U2F-Message-Formats]	section	4.3,	with	the	application
												parameter	set	to	the	claimed	RP	ID	hash,	the	challenge												parameter	set	to	the	claimed	RP	ID	hash,	the	challenge
												parameter	set	to	tbsHash,	the	key	handle	parameter	set	to	the												parameter	set	to	tbsHash,	the	key	handle	parameter	set	to	the
												claimed	credential	ID	of	the	given	credential,	and	the	user												claimed	credential	ID	of	the	given	credential,	and	the	user
												public	key	parameter	set	to	the	claimed	credential	public	key.												public	key	parameter	set	to	the	claimed	credential	public	key.
										+	Verify	that	the	sig	is	a	valid	ECDSA	P-256	signature	over	the										+	Verify	that	the	sig	is	a	valid	ECDSA	P-256	signature	over	the										+	Verify	that	the	sig	is	a	valid	ECDSA	P-256	signature	over	the
												to-be-signed	data	constructed	above.												to-be-signed	data	constructed	above.
										+	If	successful,	return	attestation	type	Basic	with	the	trust										+	If	successful,	return	attestation	type	Basic	with	the	trust
												path	set	to	x5c.												path	set	to	x5c.

8.	WebAuthn	Extensions8.	WebAuthn	Extensions

			The	mechanism	for	generating	scoped	credentials,	as	well	as	requesting			The	mechanism	for	generating	scoped	credentials,	as	well	as	requesting
40/72



/Users/jehodges/Documents/work/standards/W3C/webauthn/index-vgb-u2f-attestation-0d0fcea.txt,	Top	line:	2472

			and	generating	Authentication	assertions,	as	defined	in	4	Web			and	generating	Authentication	assertions,	as	defined	in	4	Web
			Authentication	API,	can	be	extended	to	suit	particular	use	cases.	Each			Authentication	API,	can	be	extended	to	suit	particular	use	cases.	Each
			case	is	addressed	by	defining	a	registration	extension	and/or	an			case	is	addressed	by	defining	a	registration	extension	and/or	an
			authentication	extension.	Extensions	can	define	additions	to	the			authentication	extension.	Extensions	can	define	additions	to	the
			following	steps	and	data:			following	steps	and	data:
					*	makeCredential()	request	parameters	for	registration	extension.					*	makeCredential()	request	parameters	for	registration	extension.
					*	getAssertion()	request	parameters	for	authentication	extensions.					*	getAssertion()	request	parameters	for	authentication	extensions.
					*	Client	processing,	and	the	ClientData	structure,	for	registration					*	Client	processing,	and	the	ClientData	structure,	for	registration
							extensions	and	authentication	extensions.							extensions	and	authentication	extensions.
					*	Authenticator	processing,	and	the	authenticatorData	structure,	for					*	Authenticator	processing,	and	the	authenticatorData	structure,	for
							registration	extensions	and	authentication	extensions.							registration	extensions	and	authentication	extensions.

			When	requesting	an	assertion	for	a	scoped	credential,	a	Relying	Party			When	requesting	an	assertion	for	a	scoped	credential,	a	Relying	Party
			can	list	a	set	of	extensions	to	be	used,	if	they	are	supported	by	the			can	list	a	set	of	extensions	to	be	used,	if	they	are	supported	by	the
			client	and/or	the	authenticator.	It	sends	the	client	arguments	for	each			client	and/or	the	authenticator.	It	sends	the	client	arguments	for	each
			extension	in	the	getAssertion()	call	(for	authentication	extensions)	or			extension	in	the	getAssertion()	call	(for	authentication	extensions)	or
			makeCredential()	call	(for	registration	extensions)	to	the	client			makeCredential()	call	(for	registration	extensions)	to	the	client
			platform.	The	client	platform	performs	additional	processing	for	each			platform.	The	client	platform	performs	additional	processing	for	each
			extension	that	it	supports,	and	augments	ClientData	as	required	by	the			extension	that	it	supports,	and	augments	ClientData	as	required	by	the
			extension.	In	addition,	the	client	collects	the	authenticator	arguments			extension.	In	addition,	the	client	collects	the	authenticator	arguments
			for	the	above	extensions,	and	passes	them	to	the	authenticator	in	the			for	the	above	extensions,	and	passes	them	to	the	authenticator	in	the
			authenticatorMakeCredential	call	(for	registration	extensions)	or			authenticatorMakeCredential	call	(for	registration	extensions)	or
			authenticatorGetAssertion	call	(for	authentication	extensions).	These			authenticatorGetAssertion	call	(for	authentication	extensions).	These
			authenticator	arguments	are	passed	as	name-value	pairs,	with	the			authenticator	arguments	are	passed	as	name-value	pairs,	with	the
			extension	identifier	as	the	name,	and	the	corresponding	authenticator			extension	identifier	as	the	name,	and	the	corresponding	authenticator
			argument	as	the	value.	The	authenticator,	in	turn,	performs	additional			argument	as	the	value.	The	authenticator,	in	turn,	performs	additional
			processing	for	the	extensions	that	it	supports,	and	augments			processing	for	the	extensions	that	it	supports,	and	augments
			authenticatorData	as	specified	by	the	extension.			authenticatorData	as	specified	by	the	extension.

			All	WebAuthn	extensions	are	optional	for	both	clients	and			All	WebAuthn	extensions	are	optional	for	both	clients	and
			authenticators.	Thus,	any	extensions	requested	by	a	Relying	Party	may			authenticators.	Thus,	any	extensions	requested	by	a	Relying	Party	may
			be	ignored	by	the	client	browser	or	OS	and	not	passed	to	the			be	ignored	by	the	client	browser	or	OS	and	not	passed	to	the
			authenticator	at	all,	or	they	may	be	ignored	by	the	authenticator.			authenticator	at	all,	or	they	may	be	ignored	by	the	authenticator.
			Ignoring	an	extension	is	never	considered	a	failure	in	WebAuthn	API			Ignoring	an	extension	is	never	considered	a	failure	in	WebAuthn	API
			processing,	so	when	Relying	Parties	include	extensions	with	any	API			processing,	so	when	Relying	Parties	include	extensions	with	any	API
			calls,	they	must	be	prepared	to	handle	cases	where	some	or	all	of	those			calls,	they	must	be	prepared	to	handle	cases	where	some	or	all	of	those
			extensions	are	ignored.			extensions	are	ignored.

			Clients	wishing	to	support	the	widest	possible	range	of	extensions	may			Clients	wishing	to	support	the	widest	possible	range	of	extensions	may
			choose	to	pass	through	any	extensions	that	they	do	not	recognize	to			choose	to	pass	through	any	extensions	that	they	do	not	recognize	to
			authenticators,	generating	the	authenticator	argument	by	simply			authenticators,	generating	the	authenticator	argument	by	simply
			encoding	the	client	argument	in	CBOR.	All	WebAuthn	extensions	MUST	be			encoding	the	client	argument	in	CBOR.	All	WebAuthn	extensions	MUST	be
			defined	in	such	a	way	that	this	implementation	choice	does	not	endanger			defined	in	such	a	way	that	this	implementation	choice	does	not	endanger
			the	user's	security	or	privacy.	For	instance,	if	an	extension	requires			the	user's	security	or	privacy.	For	instance,	if	an	extension	requires
			client	processing,	it	could	be	defined	in	a	manner	that	ensures	such	a			client	processing,	it	could	be	defined	in	a	manner	that	ensures	such	a
			nave	pass-through	will	produce	a	semantically	invalid	authenticator			nave	pass-through	will	produce	a	semantically	invalid	authenticator
			argument,	resulting	in	the	extension	being	ignored	by	the			argument,	resulting	in	the	extension	being	ignored	by	the
			authenticator.	Since	all	extensions	are	optional,	this	will	not	cause	a			authenticator.	Since	all	extensions	are	optional,	this	will	not	cause	a
			functional	failure	in	the	API	operation.			functional	failure	in	the	API	operation.

		8.1.	Extension	Identifiers		8.1.	Extension	Identifiers

			Extensions	are	identified	by	a	string,	called	an	extension	identifier,			Extensions	are	identified	by	a	string,	called	an	extension	identifier,
			chosen	by	the	extension	author.			chosen	by	the	extension	author.

			Extension	identifiers	SHOULD	be	registered	per	[WebAuthn-Registries]			Extension	identifiers	SHOULD	be	registered	per	[WebAuthn-Registries]
			"Registries	for	Web	Authentication	(WebAuthn)".	All	registered			"Registries	for	Web	Authentication	(WebAuthn)".	All	registered
			extension	identifiers	are	unique	amongst	themselves	as	a	matter	of			extension	identifiers	are	unique	amongst	themselves	as	a	matter	of
			course.			course.

			Unregistered	extension	identifiers	should	aim	to	be	globally	unique,			Unregistered	extension	identifiers	should	aim	to	be	globally	unique,
			e.g.,	by	including	the	defining	entity	such	as	myCompany_extension.			e.g.,	by	including	the	defining	entity	such	as	myCompany_extension.

/Users/jehodges/Documents/work/standards/W3C/webauthn/index-vgb-u2f-attestation-dc90eab.txt,	Top	line:	2463

			and	generating	Authentication	assertions,	as	defined	in	4	Web			and	generating	Authentication	assertions,	as	defined	in	4	Web
			Authentication	API,	can	be	extended	to	suit	particular	use	cases.	Each			Authentication	API,	can	be	extended	to	suit	particular	use	cases.	Each
			case	is	addressed	by	defining	a	registration	extension	and/or	an			case	is	addressed	by	defining	a	registration	extension	and/or	an
			authentication	extension.	Extensions	can	define	additions	to	the			authentication	extension.	Extensions	can	define	additions	to	the
			following	steps	and	data:			following	steps	and	data:
					*	makeCredential()	request	parameters	for	registration	extension.					*	makeCredential()	request	parameters	for	registration	extension.
					*	getAssertion()	request	parameters	for	authentication	extensions.					*	getAssertion()	request	parameters	for	authentication	extensions.
					*	Client	processing,	and	the	ClientData	structure,	for	registration					*	Client	processing,	and	the	ClientData	structure,	for	registration
							extensions	and	authentication	extensions.							extensions	and	authentication	extensions.
					*	Authenticator	processing,	and	the	authenticatorData	structure,	for					*	Authenticator	processing,	and	the	authenticatorData	structure,	for
							registration	extensions	and	authentication	extensions.							registration	extensions	and	authentication	extensions.

			When	requesting	an	assertion	for	a	scoped	credential,	a	Relying	Party			When	requesting	an	assertion	for	a	scoped	credential,	a	Relying	Party
			can	list	a	set	of	extensions	to	be	used,	if	they	are	supported	by	the			can	list	a	set	of	extensions	to	be	used,	if	they	are	supported	by	the
			client	and/or	the	authenticator.	It	sends	the	client	arguments	for	each			client	and/or	the	authenticator.	It	sends	the	client	arguments	for	each
			extension	in	the	getAssertion()	call	(for	authentication	extensions)	or			extension	in	the	getAssertion()	call	(for	authentication	extensions)	or
			makeCredential()	call	(for	registration	extensions)	to	the	client			makeCredential()	call	(for	registration	extensions)	to	the	client
			platform.	The	client	platform	performs	additional	processing	for	each			platform.	The	client	platform	performs	additional	processing	for	each
			extension	that	it	supports,	and	augments	ClientData	as	required	by	the			extension	that	it	supports,	and	augments	ClientData	as	required	by	the
			extension.	In	addition,	the	client	collects	the	authenticator	arguments			extension.	In	addition,	the	client	collects	the	authenticator	arguments
			for	the	above	extensions,	and	passes	them	to	the	authenticator	in	the			for	the	above	extensions,	and	passes	them	to	the	authenticator	in	the
			authenticatorMakeCredential	call	(for	registration	extensions)	or			authenticatorMakeCredential	call	(for	registration	extensions)	or
			authenticatorGetAssertion	call	(for	authentication	extensions).	These			authenticatorGetAssertion	call	(for	authentication	extensions).	These
			authenticator	arguments	are	passed	as	name-value	pairs,	with	the			authenticator	arguments	are	passed	as	name-value	pairs,	with	the
			extension	identifier	as	the	name,	and	the	corresponding	authenticator			extension	identifier	as	the	name,	and	the	corresponding	authenticator
			argument	as	the	value.	The	authenticator,	in	turn,	performs	additional			argument	as	the	value.	The	authenticator,	in	turn,	performs	additional
			processing	for	the	extensions	that	it	supports,	and	augments			processing	for	the	extensions	that	it	supports,	and	augments
			authenticatorData	as	specified	by	the	extension.			authenticatorData	as	specified	by	the	extension.

			All	WebAuthn	extensions	are	optional	for	both	clients	and			All	WebAuthn	extensions	are	optional	for	both	clients	and
			authenticators.	Thus,	any	extensions	requested	by	a	Relying	Party	may			authenticators.	Thus,	any	extensions	requested	by	a	Relying	Party	may
			be	ignored	by	the	client	browser	or	OS	and	not	passed	to	the			be	ignored	by	the	client	browser	or	OS	and	not	passed	to	the
			authenticator	at	all,	or	they	may	be	ignored	by	the	authenticator.			authenticator	at	all,	or	they	may	be	ignored	by	the	authenticator.
			Ignoring	an	extension	is	never	considered	a	failure	in	WebAuthn	API			Ignoring	an	extension	is	never	considered	a	failure	in	WebAuthn	API
			processing,	so	when	Relying	Parties	include	extensions	with	any	API			processing,	so	when	Relying	Parties	include	extensions	with	any	API
			calls,	they	must	be	prepared	to	handle	cases	where	some	or	all	of	those			calls,	they	must	be	prepared	to	handle	cases	where	some	or	all	of	those
			extensions	are	ignored.			extensions	are	ignored.

			Clients	wishing	to	support	the	widest	possible	range	of	extensions	may			Clients	wishing	to	support	the	widest	possible	range	of	extensions	may
			choose	to	pass	through	any	extensions	that	they	do	not	recognize	to			choose	to	pass	through	any	extensions	that	they	do	not	recognize	to
			authenticators,	generating	the	authenticator	argument	by	simply			authenticators,	generating	the	authenticator	argument	by	simply
			encoding	the	client	argument	in	CBOR.	All	WebAuthn	extensions	MUST	be			encoding	the	client	argument	in	CBOR.	All	WebAuthn	extensions	MUST	be
			defined	in	such	a	way	that	this	implementation	choice	does	not	endanger			defined	in	such	a	way	that	this	implementation	choice	does	not	endanger
			the	user's	security	or	privacy.	For	instance,	if	an	extension	requires			the	user's	security	or	privacy.	For	instance,	if	an	extension	requires
			client	processing,	it	could	be	defined	in	a	manner	that	ensures	such	a			client	processing,	it	could	be	defined	in	a	manner	that	ensures	such	a
			nave	pass-through	will	produce	a	semantically	invalid	authenticator			nave	pass-through	will	produce	a	semantically	invalid	authenticator
			argument,	resulting	in	the	extension	being	ignored	by	the			argument,	resulting	in	the	extension	being	ignored	by	the
			authenticator.	Since	all	extensions	are	optional,	this	will	not	cause	a			authenticator.	Since	all	extensions	are	optional,	this	will	not	cause	a
			functional	failure	in	the	API	operation.			functional	failure	in	the	API	operation.

		8.1.	Extension	Identifiers		8.1.	Extension	Identifiers

			Extensions	are	identified	by	a	string,	called	an	extension	identifier,			Extensions	are	identified	by	a	string,	called	an	extension	identifier,
			chosen	by	the	extension	author.			chosen	by	the	extension	author.

			Extension	identifiers	SHOULD	be	registered	per	[WebAuthn-Registries]			Extension	identifiers	SHOULD	be	registered	per	[WebAuthn-Registries]
			"Registries	for	Web	Authentication	(WebAuthn)".	All	registered			"Registries	for	Web	Authentication	(WebAuthn)".	All	registered
			extension	identifiers	are	unique	amongst	themselves	as	a	matter	of			extension	identifiers	are	unique	amongst	themselves	as	a	matter	of
			course.			course.

			Unregistered	extension	identifiers	should	aim	to	be	globally	unique,			Unregistered	extension	identifiers	should	aim	to	be	globally	unique,
			e.g.,	by	including	the	defining	entity	such	as	myCompany_extension.			e.g.,	by	including	the	defining	entity	such	as	myCompany_extension.

41/72



/Users/jehodges/Documents/work/standards/W3C/webauthn/index-vgb-u2f-attestation-0d0fcea.txt,	Top	line:	2534

			All	extension	identifiers	MUST	be	a	maximum	of	32	octets	in	length	and			All	extension	identifiers	MUST	be	a	maximum	of	32	octets	in	length	and
			MUST	consist	only	of	printable	USASCII	characters,	i.e.,	VCHAR	as			MUST	consist	only	of	printable	USASCII	characters,	i.e.,	VCHAR	as
			defined	in	[RFC5234].	Implementations	MUST	match	WebAuthn	extension			defined	in	[RFC5234].	Implementations	MUST	match	WebAuthn	extension
			identifiers	in	a	case-insensitive	fashion.			identifiers	in	a	case-insensitive	fashion.

			Extensions	that	may	exist	in	multiple	versions	should	take	care	to			Extensions	that	may	exist	in	multiple	versions	should	take	care	to
			include	a	version	in	their	identifier.	In	effect,	different	versions			include	a	version	in	their	identifier.	In	effect,	different	versions
			are	thus	treated	as	different	extensions,	e.g.,	myCompany_extension_01			are	thus	treated	as	different	extensions,	e.g.,	myCompany_extension_01

			Extensions	defined	in	this	specification	use	a	fixed	prefix	of	webauthn			Extensions	defined	in	this	specification	use	a	fixed	prefix	of	webauthn
			for	the	extension	identifiers.	This	prefix	should	not	be	used	for			for	the	extension	identifiers.	This	prefix	should	not	be	used	for
			extensions	not	defined	by	the	W3C.			extensions	not	defined	by	the	W3C.

			9	Pre-defined	extensions	defines	an	initial	set	of	currently-defined			9	Pre-defined	extensions	defines	an	initial	set	of	currently-defined
			and	registered	extensions	their	identifiers.	See	the	WebAuthn	Extension			and	registered	extensions	their	identifiers.	See	the	WebAuthn	Extension
			Identifiers	Registry	defined	in	[WebAuthn-Registries]	for	an	up-to-date			Identifiers	Registry	defined	in	[WebAuthn-Registries]	for	an	up-to-date
			list	of	registered	WebAuthn	Extension	Identifiers.			list	of	registered	WebAuthn	Extension	Identifiers.

		8.2.	Defining	extensions		8.2.	Defining	extensions

			A	definition	of	an	extension	must	specify,	at	minimum,	an	extension			A	definition	of	an	extension	must	specify,	at	minimum,	an	extension
			identifier	and	an	extension	client	argument	sent	via	the	getAssertion()			identifier	and	an	extension	client	argument	sent	via	the	getAssertion()
			or	makeCredential()	call.	Additionally,	extensions	may	specify			or	makeCredential()	call.	Additionally,	extensions	may	specify
			additional	values	in	ClientData,	authenticatorData	(in	the	case	of			additional	values	in	ClientData,	authenticatorData	(in	the	case	of
			authentication	extensions),	or	both.	Finally,	if	the	extension	requires			authentication	extensions),	or	both.	Finally,	if	the	extension	requires
			any	authenticator	processing,	it	must	also	specify	an	authenticator			any	authenticator	processing,	it	must	also	specify	an	authenticator
			argument	to	be	sent	via	the	authenticatorGetAssertion	or			argument	to	be	sent	via	the	authenticatorGetAssertion	or
			authenticatorMakeCredential	call.			authenticatorMakeCredential	call.

			Any	extension	that	requires	client	processing	MUST	specify	a	method	of			Any	extension	that	requires	client	processing	MUST	specify	a	method	of
			augmenting	ClientData	that	unambiguously	lets	the	Relying	Party	know			augmenting	ClientData	that	unambiguously	lets	the	Relying	Party	know
			that	the	extension	was	honored	by	the	client.	Similarly,	any	extension			that	the	extension	was	honored	by	the	client.	Similarly,	any	extension
			that	requires	authenticator	processing	MUST	specify	a	method	of			that	requires	authenticator	processing	MUST	specify	a	method	of
			augmenting	authenticatorData	to	let	the	Relying	Party	know	that	the			augmenting	authenticatorData	to	let	the	Relying	Party	know	that	the
			extension	was	honored	by	the	authenticator.			extension	was	honored	by	the	authenticator.

		8.3.	Extending	request	parameters		8.3.	Extending	request	parameters

			An	extension	defines	up	to	two	request	arguments.	The	client	argument			An	extension	defines	up	to	two	request	arguments.	The	client	argument
			is	passed	from	the	Relying	Party	to	the	client	in	the	getAssertion()	or			is	passed	from	the	Relying	Party	to	the	client	in	the	getAssertion()	or
			makeCredential()	call,	while	the	authenticator	argument	is	passed	from			makeCredential()	call,	while	the	authenticator	argument	is	passed	from
			the	client	to	the	authenticator	during	the	processing	of	these	calls.			the	client	to	the	authenticator	during	the	processing	of	these	calls.

			A	Relying	Party	simultaneously	requests	the	use	of	an	extension	and			A	Relying	Party	simultaneously	requests	the	use	of	an	extension	and
			sets	its	client	argument	by	including	an	entry	in	the	extensions	option			sets	its	client	argument	by	including	an	entry	in	the	extensions	option
			to	the	makeCredential()	or	getAssertion()	call.	The	entry	key	MUST	be			to	the	makeCredential()	or	getAssertion()	call.	The	entry	key	MUST	be
			the	extension	identifier,	and	the	value	MUST	be	the	client	argument.			the	extension	identifier,	and	the	value	MUST	be	the	client	argument.
var	assertionPromise	=	credentials.getAssertion(...,	/*	extensions	*/	{var	assertionPromise	=	credentials.getAssertion(...,	/*	extensions	*/	{
				"webauthnExample_foobar":	42				"webauthnExample_foobar":	42
});});

			Extension	definitions	MUST	specify	the	valid	values	for	their	client			Extension	definitions	MUST	specify	the	valid	values	for	their	client
			argument.	Clients	SHOULD	ignore	extensions	with	an	invalid	client			argument.	Clients	SHOULD	ignore	extensions	with	an	invalid	client
			argument.	If	an	extension	does	not	require	any	parameters	from	the			argument.	If	an	extension	does	not	require	any	parameters	from	the
			Relying	Party,	it	SHOULD	be	defined	as	taking	a	Boolean	client			Relying	Party,	it	SHOULD	be	defined	as	taking	a	Boolean	client
			argument,	set	to	true	to	signify	that	the	extension	is	requested	by	the			argument,	set	to	true	to	signify	that	the	extension	is	requested	by	the
			Relying	Party.			Relying	Party.

			Extensions	that	only	affect	client	processing	need	not	specify	an			Extensions	that	only	affect	client	processing	need	not	specify	an
			authenticator	argument.	Extensions	that	affect	authenticator	processing			authenticator	argument.	Extensions	that	affect	authenticator	processing
			MUST	specify	a	method	of	computing	the	authenticator	argument	from	the			MUST	specify	a	method	of	computing	the	authenticator	argument	from	the

/Users/jehodges/Documents/work/standards/W3C/webauthn/index-vgb-u2f-attestation-dc90eab.txt,	Top	line:	2525

			All	extension	identifiers	MUST	be	a	maximum	of	32	octets	in	length	and			All	extension	identifiers	MUST	be	a	maximum	of	32	octets	in	length	and
			MUST	consist	only	of	printable	USASCII	characters,	i.e.,	VCHAR	as			MUST	consist	only	of	printable	USASCII	characters,	i.e.,	VCHAR	as
			defined	in	[RFC5234].	Implementations	MUST	match	WebAuthn	extension			defined	in	[RFC5234].	Implementations	MUST	match	WebAuthn	extension
			identifiers	in	a	case-insensitive	fashion.			identifiers	in	a	case-insensitive	fashion.

			Extensions	that	may	exist	in	multiple	versions	should	take	care	to			Extensions	that	may	exist	in	multiple	versions	should	take	care	to
			include	a	version	in	their	identifier.	In	effect,	different	versions			include	a	version	in	their	identifier.	In	effect,	different	versions
			are	thus	treated	as	different	extensions,	e.g.,	myCompany_extension_01			are	thus	treated	as	different	extensions,	e.g.,	myCompany_extension_01

			Extensions	defined	in	this	specification	use	a	fixed	prefix	of	webauthn			Extensions	defined	in	this	specification	use	a	fixed	prefix	of	webauthn
			for	the	extension	identifiers.	This	prefix	should	not	be	used	for			for	the	extension	identifiers.	This	prefix	should	not	be	used	for
			extensions	not	defined	by	the	W3C.			extensions	not	defined	by	the	W3C.

			9	Pre-defined	extensions	defines	an	initial	set	of	currently-defined			9	Pre-defined	extensions	defines	an	initial	set	of	currently-defined
			and	registered	extensions	their	identifiers.	See	the	WebAuthn	Extension			and	registered	extensions	their	identifiers.	See	the	WebAuthn	Extension
			Identifiers	Registry	defined	in	[WebAuthn-Registries]	for	an	up-to-date			Identifiers	Registry	defined	in	[WebAuthn-Registries]	for	an	up-to-date
			list	of	registered	WebAuthn	Extension	Identifiers.			list	of	registered	WebAuthn	Extension	Identifiers.

		8.2.	Defining	extensions		8.2.	Defining	extensions

			A	definition	of	an	extension	must	specify,	at	minimum,	an	extension			A	definition	of	an	extension	must	specify,	at	minimum,	an	extension
			identifier	and	an	extension	client	argument	sent	via	the	getAssertion()			identifier	and	an	extension	client	argument	sent	via	the	getAssertion()
			or	makeCredential()	call.	Additionally,	extensions	may	specify			or	makeCredential()	call.	Additionally,	extensions	may	specify
			additional	values	in	ClientData,	authenticatorData	(in	the	case	of			additional	values	in	ClientData,	authenticatorData	(in	the	case	of
			authentication	extensions),	or	both.	Finally,	if	the	extension	requires			authentication	extensions),	or	both.	Finally,	if	the	extension	requires
			any	authenticator	processing,	it	must	also	specify	an	authenticator			any	authenticator	processing,	it	must	also	specify	an	authenticator
			argument	to	be	sent	via	the	authenticatorGetAssertion	or			argument	to	be	sent	via	the	authenticatorGetAssertion	or
			authenticatorMakeCredential	call.			authenticatorMakeCredential	call.

			Any	extension	that	requires	client	processing	MUST	specify	a	method	of			Any	extension	that	requires	client	processing	MUST	specify	a	method	of
			augmenting	ClientData	that	unambiguously	lets	the	Relying	Party	know			augmenting	ClientData	that	unambiguously	lets	the	Relying	Party	know
			that	the	extension	was	honored	by	the	client.	Similarly,	any	extension			that	the	extension	was	honored	by	the	client.	Similarly,	any	extension
			that	requires	authenticator	processing	MUST	specify	a	method	of			that	requires	authenticator	processing	MUST	specify	a	method	of
			augmenting	authenticatorData	to	let	the	Relying	Party	know	that	the			augmenting	authenticatorData	to	let	the	Relying	Party	know	that	the
			extension	was	honored	by	the	authenticator.			extension	was	honored	by	the	authenticator.

		8.3.	Extending	request	parameters		8.3.	Extending	request	parameters

			An	extension	defines	up	to	two	request	arguments.	The	client	argument			An	extension	defines	up	to	two	request	arguments.	The	client	argument
			is	passed	from	the	Relying	Party	to	the	client	in	the	getAssertion()	or			is	passed	from	the	Relying	Party	to	the	client	in	the	getAssertion()	or
			makeCredential()	call,	while	the	authenticator	argument	is	passed	from			makeCredential()	call,	while	the	authenticator	argument	is	passed	from
			the	client	to	the	authenticator	during	the	processing	of	these	calls.			the	client	to	the	authenticator	during	the	processing	of	these	calls.

			A	Relying	Party	simultaneously	requests	the	use	of	an	extension	and			A	Relying	Party	simultaneously	requests	the	use	of	an	extension	and
			sets	its	client	argument	by	including	an	entry	in	the	extensions	option			sets	its	client	argument	by	including	an	entry	in	the	extensions	option
			to	the	makeCredential()	or	getAssertion()	call.	The	entry	key	MUST	be			to	the	makeCredential()	or	getAssertion()	call.	The	entry	key	MUST	be
			the	extension	identifier,	and	the	value	MUST	be	the	client	argument.			the	extension	identifier,	and	the	value	MUST	be	the	client	argument.
var	assertionPromise	=	credentials.getAssertion(...,	/*	extensions	*/	{var	assertionPromise	=	credentials.getAssertion(...,	/*	extensions	*/	{
				"webauthnExample_foobar":	42				"webauthnExample_foobar":	42
});});

			Extension	definitions	MUST	specify	the	valid	values	for	their	client			Extension	definitions	MUST	specify	the	valid	values	for	their	client
			argument.	Clients	SHOULD	ignore	extensions	with	an	invalid	client			argument.	Clients	SHOULD	ignore	extensions	with	an	invalid	client
			argument.	If	an	extension	does	not	require	any	parameters	from	the			argument.	If	an	extension	does	not	require	any	parameters	from	the
			Relying	Party,	it	SHOULD	be	defined	as	taking	a	Boolean	client			Relying	Party,	it	SHOULD	be	defined	as	taking	a	Boolean	client
			argument,	set	to	true	to	signify	that	the	extension	is	requested	by	the			argument,	set	to	true	to	signify	that	the	extension	is	requested	by	the
			Relying	Party.			Relying	Party.

			Extensions	that	only	affect	client	processing	need	not	specify	an			Extensions	that	only	affect	client	processing	need	not	specify	an
			authenticator	argument.	Extensions	that	affect	authenticator	processing			authenticator	argument.	Extensions	that	affect	authenticator	processing
			MUST	specify	a	method	of	computing	the	authenticator	argument	from	the			MUST	specify	a	method	of	computing	the	authenticator	argument	from	the

42/72



/Users/jehodges/Documents/work/standards/W3C/webauthn/index-vgb-u2f-attestation-0d0fcea.txt,	Top	line:	2596

			client	argument.	For	extensions	that	do	not	require	additional			client	argument.	For	extensions	that	do	not	require	additional
			parameters,	and	are	defined	as	taking	a	Boolean	client	argument	set	to			parameters,	and	are	defined	as	taking	a	Boolean	client	argument	set	to
			true,	this	method	SHOULD	consist	of	passing	an	authenticator	argument			true,	this	method	SHOULD	consist	of	passing	an	authenticator	argument
			of	true	(CBOR	major	type	7,	value	21).			of	true	(CBOR	major	type	7,	value	21).

			Note:	Extensions	should	aim	to	define	authenticator	arguments	that	are			Note:	Extensions	should	aim	to	define	authenticator	arguments	that	are
			as	small	as	possible.	Some	authenticators	communicate	over			as	small	as	possible.	Some	authenticators	communicate	over
			low-bandwidth	links	such	as	Bluetooth	Low-Energy	or	NFC.			low-bandwidth	links	such	as	Bluetooth	Low-Energy	or	NFC.

		8.4.	Extending	client	processing		8.4.	Extending	client	processing

			Extensions	may	define	additional	processing	requirements	on	the	client			Extensions	may	define	additional	processing	requirements	on	the	client
			platform	during	the	creation	of	credentials	or	the	generation	of	an			platform	during	the	creation	of	credentials	or	the	generation	of	an
			assertion.	In	order	for	the	Relying	Party	to	verify	the	processing	took			assertion.	In	order	for	the	Relying	Party	to	verify	the	processing	took
			place,	or	if	the	processing	has	a	result	value	that	the	Relying	Party			place,	or	if	the	processing	has	a	result	value	that	the	Relying	Party
			needs	to	be	aware	of,	the	extension	should	specify	a	client	data	value			needs	to	be	aware	of,	the	extension	should	specify	a	client	data	value
			to	be	included	in	the	ClientData	structure.			to	be	included	in	the	ClientData	structure.

			The	client	data	value	may	be	any	value	that	can	be	encoded	using	JSON.			The	client	data	value	may	be	any	value	that	can	be	encoded	using	JSON.
			If	any	extension	processed	by	a	client	defines	such	a	value,	the	client			If	any	extension	processed	by	a	client	defines	such	a	value,	the	client
			SHOULD	include	a	dictionary	in	ClientData	with	the	key	extensions.	For			SHOULD	include	a	dictionary	in	ClientData	with	the	key	extensions.	For
			each	such	extension,	the	client	SHOULD	add	an	entry	to	this	dictionary			each	such	extension,	the	client	SHOULD	add	an	entry	to	this	dictionary
			with	the	extension	identifier	as	the	key,	and	the	extension's	client			with	the	extension	identifier	as	the	key,	and	the	extension's	client
			data	value.			data	value.

			Extensions	that	require	authenticator	processing	MUST	define	the			Extensions	that	require	authenticator	processing	MUST	define	the
			process	by	which	the	client	argument	can	be	used	to	determine	the			process	by	which	the	client	argument	can	be	used	to	determine	the
			authenticator	argument.			authenticator	argument.

		8.5.	Extending	authenticator	processing		8.5.	Extending	authenticator	processing

			Extensions	that	define	additional	authenticator	processing	may			Extensions	that	define	additional	authenticator	processing	may
			similarly	define	an	authenticator	data	value.	The	value	may	be	any	data			similarly	define	an	authenticator	data	value.	The	value	may	be	any	data
			that	can	be	encoded	in	CBOR.	An	authenticator	that	processes	an			that	can	be	encoded	in	CBOR.	An	authenticator	that	processes	an
			authentication	extension	that	defines	such	a	value	must	include	it	in			authentication	extension	that	defines	such	a	value	must	include	it	in
			the	authenticatorData.			the	authenticatorData.

			As	specified	in	5.2.1	Authenticator	data,	the	authenticator	data	value			As	specified	in	5.2.1	Authenticator	data,	the	authenticator	data	value
			of	each	processed	extension	is	included	in	the	extended	data	part	of			of	each	processed	extension	is	included	in	the	extended	data	part	of
			the	authenticatorData.	This	part	is	a	CBOR	map,	with	extension			the	authenticatorData.	This	part	is	a	CBOR	map,	with	extension
			identifiers	as	keys,	and	the	authenticator	data	value	of	each	extension			identifiers	as	keys,	and	the	authenticator	data	value	of	each	extension
			as	the	value.			as	the	value.

		8.6.	Example	extension		8.6.	Example	extension

			This	section	is	not	normative.			This	section	is	not	normative.

			To	illustrate	the	requirements	above,	consider	a	hypothetical	extension			To	illustrate	the	requirements	above,	consider	a	hypothetical	extension
			"Geo".	This	extension,	if	supported,	lets	both	clients	and			"Geo".	This	extension,	if	supported,	lets	both	clients	and
			authenticators	embed	their	geolocation	in	assertions.			authenticators	embed	their	geolocation	in	assertions.

			The	extension	identifier	is	chosen	as	webauthnExample_geo.	The	client			The	extension	identifier	is	chosen	as	webauthnExample_geo.	The	client
			argument	is	the	constant	value	true,	since	the	extension	does	not			argument	is	the	constant	value	true,	since	the	extension	does	not
			require	the	Relying	Party	to	pass	any	particular	information	to	the			require	the	Relying	Party	to	pass	any	particular	information	to	the
			client,	other	than	that	it	requests	the	use	of	the	extension.	The			client,	other	than	that	it	requests	the	use	of	the	extension.	The
			Relying	Party	sets	this	value	in	its	request	for	an	assertion:			Relying	Party	sets	this	value	in	its	request	for	an	assertion:
var	assertionPromise	=var	assertionPromise	=
				credentials.getAssertion("SGFuIFNvbG8gc2hvdCBmaXJzdC4",				credentials.getAssertion("SGFuIFNvbG8gc2hvdCBmaXJzdC4",
								{},	/*	Empty	filter	*/								{},	/*	Empty	filter	*/
								{	'webauthnExample_geo':	true	});								{	'webauthnExample_geo':	true	});

			The	extension	defines	the	additional	client	data	to	be	the	client's			The	extension	defines	the	additional	client	data	to	be	the	client's

/Users/jehodges/Documents/work/standards/W3C/webauthn/index-vgb-u2f-attestation-dc90eab.txt,	Top	line:	2587

			client	argument.	For	extensions	that	do	not	require	additional			client	argument.	For	extensions	that	do	not	require	additional
			parameters,	and	are	defined	as	taking	a	Boolean	client	argument	set	to			parameters,	and	are	defined	as	taking	a	Boolean	client	argument	set	to
			true,	this	method	SHOULD	consist	of	passing	an	authenticator	argument			true,	this	method	SHOULD	consist	of	passing	an	authenticator	argument
			of	true	(CBOR	major	type	7,	value	21).			of	true	(CBOR	major	type	7,	value	21).

			Note:	Extensions	should	aim	to	define	authenticator	arguments	that	are			Note:	Extensions	should	aim	to	define	authenticator	arguments	that	are
			as	small	as	possible.	Some	authenticators	communicate	over			as	small	as	possible.	Some	authenticators	communicate	over
			low-bandwidth	links	such	as	Bluetooth	Low-Energy	or	NFC.			low-bandwidth	links	such	as	Bluetooth	Low-Energy	or	NFC.

		8.4.	Extending	client	processing		8.4.	Extending	client	processing

			Extensions	may	define	additional	processing	requirements	on	the	client			Extensions	may	define	additional	processing	requirements	on	the	client
			platform	during	the	creation	of	credentials	or	the	generation	of	an			platform	during	the	creation	of	credentials	or	the	generation	of	an
			assertion.	In	order	for	the	Relying	Party	to	verify	the	processing	took			assertion.	In	order	for	the	Relying	Party	to	verify	the	processing	took
			place,	or	if	the	processing	has	a	result	value	that	the	Relying	Party			place,	or	if	the	processing	has	a	result	value	that	the	Relying	Party
			needs	to	be	aware	of,	the	extension	should	specify	a	client	data	value			needs	to	be	aware	of,	the	extension	should	specify	a	client	data	value
			to	be	included	in	the	ClientData	structure.			to	be	included	in	the	ClientData	structure.

			The	client	data	value	may	be	any	value	that	can	be	encoded	using	JSON.			The	client	data	value	may	be	any	value	that	can	be	encoded	using	JSON.
			If	any	extension	processed	by	a	client	defines	such	a	value,	the	client			If	any	extension	processed	by	a	client	defines	such	a	value,	the	client
			SHOULD	include	a	dictionary	in	ClientData	with	the	key	extensions.	For			SHOULD	include	a	dictionary	in	ClientData	with	the	key	extensions.	For
			each	such	extension,	the	client	SHOULD	add	an	entry	to	this	dictionary			each	such	extension,	the	client	SHOULD	add	an	entry	to	this	dictionary
			with	the	extension	identifier	as	the	key,	and	the	extension's	client			with	the	extension	identifier	as	the	key,	and	the	extension's	client
			data	value.			data	value.

			Extensions	that	require	authenticator	processing	MUST	define	the			Extensions	that	require	authenticator	processing	MUST	define	the
			process	by	which	the	client	argument	can	be	used	to	determine	the			process	by	which	the	client	argument	can	be	used	to	determine	the
			authenticator	argument.			authenticator	argument.

		8.5.	Extending	authenticator	processing		8.5.	Extending	authenticator	processing

			Extensions	that	define	additional	authenticator	processing	may			Extensions	that	define	additional	authenticator	processing	may
			similarly	define	an	authenticator	data	value.	The	value	may	be	any	data			similarly	define	an	authenticator	data	value.	The	value	may	be	any	data
			that	can	be	encoded	in	CBOR.	An	authenticator	that	processes	an			that	can	be	encoded	in	CBOR.	An	authenticator	that	processes	an
			authentication	extension	that	defines	such	a	value	must	include	it	in			authentication	extension	that	defines	such	a	value	must	include	it	in
			the	authenticatorData.			the	authenticatorData.

			As	specified	in	5.2.1	Authenticator	data,	the	authenticator	data	value			As	specified	in	5.2.1	Authenticator	data,	the	authenticator	data	value
			of	each	processed	extension	is	included	in	the	extended	data	part	of			of	each	processed	extension	is	included	in	the	extended	data	part	of
			the	authenticatorData.	This	part	is	a	CBOR	map,	with	extension			the	authenticatorData.	This	part	is	a	CBOR	map,	with	extension
			identifiers	as	keys,	and	the	authenticator	data	value	of	each	extension			identifiers	as	keys,	and	the	authenticator	data	value	of	each	extension
			as	the	value.			as	the	value.

		8.6.	Example	extension		8.6.	Example	extension

			This	section	is	not	normative.			This	section	is	not	normative.

			To	illustrate	the	requirements	above,	consider	a	hypothetical	extension			To	illustrate	the	requirements	above,	consider	a	hypothetical	extension
			"Geo".	This	extension,	if	supported,	lets	both	clients	and			"Geo".	This	extension,	if	supported,	lets	both	clients	and
			authenticators	embed	their	geolocation	in	assertions.			authenticators	embed	their	geolocation	in	assertions.

			The	extension	identifier	is	chosen	as	webauthnExample_geo.	The	client			The	extension	identifier	is	chosen	as	webauthnExample_geo.	The	client
			argument	is	the	constant	value	true,	since	the	extension	does	not			argument	is	the	constant	value	true,	since	the	extension	does	not
			require	the	Relying	Party	to	pass	any	particular	information	to	the			require	the	Relying	Party	to	pass	any	particular	information	to	the
			client,	other	than	that	it	requests	the	use	of	the	extension.	The			client,	other	than	that	it	requests	the	use	of	the	extension.	The
			Relying	Party	sets	this	value	in	its	request	for	an	assertion:			Relying	Party	sets	this	value	in	its	request	for	an	assertion:
var	assertionPromise	=var	assertionPromise	=
				credentials.getAssertion("SGFuIFNvbG8gc2hvdCBmaXJzdC4",				credentials.getAssertion("SGFuIFNvbG8gc2hvdCBmaXJzdC4",
								{},	/*	Empty	filter	*/								{},	/*	Empty	filter	*/
								{	'webauthnExample_geo':	true	});								{	'webauthnExample_geo':	true	});

			The	extension	defines	the	additional	client	data	to	be	the	client's			The	extension	defines	the	additional	client	data	to	be	the	client's
43/72



/Users/jehodges/Documents/work/standards/W3C/webauthn/index-vgb-u2f-attestation-0d0fcea.txt,	Top	line:	2658

			location,	if	known,	as	a	GeoJSON	[GeoJSON]	point.	The	client	constructs			location,	if	known,	as	a	GeoJSON	[GeoJSON]	point.	The	client	constructs
			the	following	client	data:			the	following	client	data:
{{
				...,				...,
				'extensions':	{				'extensions':	{
								'webauthnExample_geo':	{								'webauthnExample_geo':	{
												'type':	'Point',												'type':	'Point',
												'coordinates':	[65.059962,	-13.993041]												'coordinates':	[65.059962,	-13.993041]
								}								}
				}				}
}}

			The	extension	also	requires	the	client	to	set	the	authenticator			The	extension	also	requires	the	client	to	set	the	authenticator
			parameter	to	the	fixed	value	true.			parameter	to	the	fixed	value	true.

			Finally,	the	extension	requires	the	authenticator	to	specify	its			Finally,	the	extension	requires	the	authenticator	to	specify	its
			geolocation	in	the	authenticator	data,	if	known.	The	extension	e.g.			geolocation	in	the	authenticator	data,	if	known.	The	extension	e.g.
			specifies	that	the	location	shall	be	encoded	as	a	two-element	array	of			specifies	that	the	location	shall	be	encoded	as	a	two-element	array	of
			floating	point	numbers,	encoded	with	CBOR.	An	authenticator	does	this			floating	point	numbers,	encoded	with	CBOR.	An	authenticator	does	this
			by	including	it	in	the	authenticatorData.	As	an	example,	authenticator			by	including	it	in	the	authenticatorData.	As	an	example,	authenticator
			data	may	be	as	follows	(notation	taken	from	[RFC7049]):			data	may	be	as	follows	(notation	taken	from	[RFC7049]):
81	(hex)																																				--	Flags,	ED	and	TUP	both	set.81	(hex)																																				--	Flags,	ED	and	TUP	both	set.
20	05	58	1F																																	--	Signature	counter20	05	58	1F																																	--	Signature	counter
A1																																										--	CBOR	map	of	one	elementA1																																										--	CBOR	map	of	one	element
				73																																						--	Key	1:	CBOR	text	string	of	19	byt				73																																						--	Key	1:	CBOR	text	string	of	19	byt
eses
								77	65	62	61	75	74	68	6E	45	78	61								77	65	62	61	75	74	68	6E	45	78	61
								6D	70	6C	65	5F	67	65	6F													--	"webauthnExample_geo"	UTF-8	encod								6D	70	6C	65	5F	67	65	6F													--	"webauthnExample_geo"	UTF-8	encod
ed	stringed	string
				82																																						--	Value	1:	CBOR	array	of	two	elemen				82																																						--	Value	1:	CBOR	array	of	two	elemen
tsts
								FA	42	82	1E	B3																						--	Element	1:	Latitude	as	CBOR	encod								FA	42	82	1E	B3																						--	Element	1:	Latitude	as	CBOR	encod
ed	floated	float
								FA	C1	5F	E3	7F																						--	Element	2:	Longitude	as	CBOR	enco								FA	C1	5F	E3	7F																						--	Element	2:	Longitude	as	CBOR	enco
ded	floatded	float

9.	Pre-defined	extensions9.	Pre-defined	extensions

			This	section	defines	an	initial	set	of	extensions.	These	are			This	section	defines	an	initial	set	of	extensions.	These	are
			recommended	for	implementation	by	user	agents	targeting	broad			recommended	for	implementation	by	user	agents	targeting	broad
			interoperability.			interoperability.

		9.1.	FIDO	AppId		9.1.	FIDO	AppId

			This	authentication	extension	allows	Relying	Parties	who	have			This	authentication	extension	allows	Relying	Parties	who	have
			previously	registered	a	credential	using	the	legacy	FIDO	JavaScript			previously	registered	a	credential	using	the	legacy	FIDO	JavaScript
			APIs	to	request	an	assertion.	Specifically,	this	extension	allows			APIs	to	request	an	assertion.	Specifically,	this	extension	allows
			Relying	Parties	to	specify	an	appId	[FIDO-APPID]	to	overwrite	the			Relying	Parties	to	specify	an	appId	[FIDO-APPID]	to	overwrite	the
			otherwise	computed	rpId.	This	extension	is	only	valid	if	used	during			otherwise	computed	rpId.	This	extension	is	only	valid	if	used	during
			the	getAssertion()	call;	other	usage	will	result	in	client	error.			the	getAssertion()	call;	other	usage	will	result	in	client	error.

			Extension	identifier			Extension	identifier

										fido_appid										fido_appid

			Client	argument			Client	argument

										A	single	UTF-8	encoded	string	specifying	a	FIDO	appId.										A	single	UTF-8	encoded	string	specifying	a	FIDO	appId.

			Client	processing			Client	processing

										If	rpId	is	present,	reject	promise	with	a	DOMException	whose										If	rpId	is	present,	reject	promise	with	a	DOMException	whose

/Users/jehodges/Documents/work/standards/W3C/webauthn/index-vgb-u2f-attestation-dc90eab.txt,	Top	line:	2649

			location,	if	known,	as	a	GeoJSON	[GeoJSON]	point.	The	client	constructs			location,	if	known,	as	a	GeoJSON	[GeoJSON]	point.	The	client	constructs
			the	following	client	data:			the	following	client	data:
{{
				...,				...,
				'extensions':	{				'extensions':	{
								'webauthnExample_geo':	{								'webauthnExample_geo':	{
												'type':	'Point',												'type':	'Point',
												'coordinates':	[65.059962,	-13.993041]												'coordinates':	[65.059962,	-13.993041]
								}								}
				}				}
}}

			The	extension	also	requires	the	client	to	set	the	authenticator			The	extension	also	requires	the	client	to	set	the	authenticator
			parameter	to	the	fixed	value	true.			parameter	to	the	fixed	value	true.

			Finally,	the	extension	requires	the	authenticator	to	specify	its			Finally,	the	extension	requires	the	authenticator	to	specify	its
			geolocation	in	the	authenticator	data,	if	known.	The	extension	e.g.			geolocation	in	the	authenticator	data,	if	known.	The	extension	e.g.
			specifies	that	the	location	shall	be	encoded	as	a	two-element	array	of			specifies	that	the	location	shall	be	encoded	as	a	two-element	array	of
			floating	point	numbers,	encoded	with	CBOR.	An	authenticator	does	this			floating	point	numbers,	encoded	with	CBOR.	An	authenticator	does	this
			by	including	it	in	the	authenticatorData.	As	an	example,	authenticator			by	including	it	in	the	authenticatorData.	As	an	example,	authenticator
			data	may	be	as	follows	(notation	taken	from	[RFC7049]):			data	may	be	as	follows	(notation	taken	from	[RFC7049]):
81	(hex)																																				--	Flags,	ED	and	TUP	both	set.81	(hex)																																				--	Flags,	ED	and	TUP	both	set.
20	05	58	1F																																	--	Signature	counter20	05	58	1F																																	--	Signature	counter
A1																																										--	CBOR	map	of	one	elementA1																																										--	CBOR	map	of	one	element
				73																																						--	Key	1:	CBOR	text	string	of	19	byt				73																																						--	Key	1:	CBOR	text	string	of	19	byt
eses
								77	65	62	61	75	74	68	6E	45	78	61								77	65	62	61	75	74	68	6E	45	78	61
								6D	70	6C	65	5F	67	65	6F													--	"webauthnExample_geo"	UTF-8	encod								6D	70	6C	65	5F	67	65	6F													--	"webauthnExample_geo"	UTF-8	encod
ed	stringed	string
				82																																						--	Value	1:	CBOR	array	of	two	elemen				82																																						--	Value	1:	CBOR	array	of	two	elemen
tsts
								FA	42	82	1E	B3																						--	Element	1:	Latitude	as	CBOR	encod								FA	42	82	1E	B3																						--	Element	1:	Latitude	as	CBOR	encod
ed	floated	float
								FA	C1	5F	E3	7F																						--	Element	2:	Longitude	as	CBOR	enco								FA	C1	5F	E3	7F																						--	Element	2:	Longitude	as	CBOR	enco
ded	floatded	float

9.	Pre-defined	extensions9.	Pre-defined	extensions

			This	section	defines	an	initial	set	of	extensions.	These	are			This	section	defines	an	initial	set	of	extensions.	These	are
			recommended	for	implementation	by	user	agents	targeting	broad			recommended	for	implementation	by	user	agents	targeting	broad
			interoperability.			interoperability.

		9.1.	FIDO	AppId		9.1.	FIDO	AppId

			This	authentication	extension	allows	Relying	Parties	who	have			This	authentication	extension	allows	Relying	Parties	who	have
			previously	registered	a	credential	using	the	legacy	FIDO	JavaScript			previously	registered	a	credential	using	the	legacy	FIDO	JavaScript
			APIs	to	request	an	assertion.	Specifically,	this	extension	allows			APIs	to	request	an	assertion.	Specifically,	this	extension	allows
			Relying	Parties	to	specify	an	appId	[FIDO-APPID]	to	overwrite	the			Relying	Parties	to	specify	an	appId	[FIDO-APPID]	to	overwrite	the
			otherwise	computed	rpId.	This	extension	is	only	valid	if	used	during			otherwise	computed	rpId.	This	extension	is	only	valid	if	used	during
			the	getAssertion()	call;	other	usage	will	result	in	client	error.			the	getAssertion()	call;	other	usage	will	result	in	client	error.

			Extension	identifier			Extension	identifier

										fido_appid										fido_appid

			Client	argument			Client	argument

										A	single	UTF-8	encoded	string	specifying	a	FIDO	appId.										A	single	UTF-8	encoded	string	specifying	a	FIDO	appId.

			Client	processing			Client	processing

										If	rpId	is	present,	reject	promise	with	a	DOMException	whose										If	rpId	is	present,	reject	promise	with	a	DOMException	whose
44/72



/Users/jehodges/Documents/work/standards/W3C/webauthn/index-vgb-u2f-attestation-0d0fcea.txt,	Top	line:	2720

										name	is	"NotAllowedError",	and	terminate	this	algorithm.	Replace										name	is	"NotAllowedError",	and	terminate	this	algorithm.	Replace
										the	calculation	of	rpId	in	Step	3	of	4.1.2	Use	an	existing										the	calculation	of	rpId	in	Step	3	of	4.1.2	Use	an	existing
										credential	(getAssertion()	method)	with	the	following	procedure:										credential	(getAssertion()	method)	with	the	following	procedure:
										The	client	uses	the	value	of	fido_appid	to	perform	the	AppId										The	client	uses	the	value	of	fido_appid	to	perform	the	AppId
										validation	procedure	(as	defined	by	[FIDO-APPID]).	If	valid,	the										validation	procedure	(as	defined	by	[FIDO-APPID]).	If	valid,	the
										value	of	rpId	for	all	client	processing	should	be	replaced	by										value	of	rpId	for	all	client	processing	should	be	replaced	by
										the	value	of	fido_appid.										the	value	of	fido_appid.

			Authenticator	argument			Authenticator	argument

										none										none

			Authenticator	processing			Authenticator	processing

										none										none

			Authenticator	data			Authenticator	data

										none										none

		9.2.	Transaction	authorization		9.2.	Transaction	authorization

			This	authentication	extension	allows	for	a	simple	form	of	transaction			This	authentication	extension	allows	for	a	simple	form	of	transaction
			authorization.	A	Relying	Party	can	specify	a	prompt	string,	intended			authorization.	A	Relying	Party	can	specify	a	prompt	string,	intended
			for	display	on	a	trusted	device	on	the	authenticator.			for	display	on	a	trusted	device	on	the	authenticator.

			Extension	identifier			Extension	identifier

										webauthn_txAuthSimple										webauthn_txAuthSimple

			Client	argument			Client	argument

										A	single	UTF-8	encoded	string	prompt.										A	single	UTF-8	encoded	string	prompt.

			Client	processing			Client	processing

										None,	except	default	forwarding	of	client	argument	to										None,	except	default	forwarding	of	client	argument	to
										authenticator	argument.										authenticator	argument.

			Authenticator	argument			Authenticator	argument

										The	client	argument	encoded	as	a	CBOR	text	string	(major	type										The	client	argument	encoded	as	a	CBOR	text	string	(major	type
										3).										3).

			Authenticator	processing			Authenticator	processing

										The	authenticator	MUST	display	the	prompt	to	the	user	before										The	authenticator	MUST	display	the	prompt	to	the	user	before
										performing	the	user	verification	/	test	of	user	presence.	The										performing	the	user	verification	/	test	of	user	presence.	The
										authenticator	may	insert	line	breaks	if	needed.										authenticator	may	insert	line	breaks	if	needed.

			Authenticator	data			Authenticator	data

										A	single	UTF-8	encoded	string,	representing	the	prompt	as										A	single	UTF-8	encoded	string,	representing	the	prompt	as
										displayed	(including	any	eventual	line	breaks).										displayed	(including	any	eventual	line	breaks).

			The	generic	version	of	this	extension	allows	images	to	be	used	as			The	generic	version	of	this	extension	allows	images	to	be	used	as
			prompts	as	well.	This	allows	authenticators	without	a	font	rendering			prompts	as	well.	This	allows	authenticators	without	a	font	rendering
			engine	to	be	used	and	also	supports	a	richer	visual	appearance.			engine	to	be	used	and	also	supports	a	richer	visual	appearance.

			Extension	identifier			Extension	identifier

										webauthn_txAuthGeneric										webauthn_txAuthGeneric

/Users/jehodges/Documents/work/standards/W3C/webauthn/index-vgb-u2f-attestation-dc90eab.txt,	Top	line:	2711

										name	is	"NotAllowedError",	and	terminate	this	algorithm.	Replace										name	is	"NotAllowedError",	and	terminate	this	algorithm.	Replace
										the	calculation	of	rpId	in	Step	3	of	4.1.2	Use	an	existing										the	calculation	of	rpId	in	Step	3	of	4.1.2	Use	an	existing
										credential	(getAssertion()	method)	with	the	following	procedure:										credential	(getAssertion()	method)	with	the	following	procedure:
										The	client	uses	the	value	of	fido_appid	to	perform	the	AppId										The	client	uses	the	value	of	fido_appid	to	perform	the	AppId
										validation	procedure	(as	defined	by	[FIDO-APPID]).	If	valid,	the										validation	procedure	(as	defined	by	[FIDO-APPID]).	If	valid,	the
										value	of	rpId	for	all	client	processing	should	be	replaced	by										value	of	rpId	for	all	client	processing	should	be	replaced	by
										the	value	of	fido_appid.										the	value	of	fido_appid.

			Authenticator	argument			Authenticator	argument

										none										none

			Authenticator	processing			Authenticator	processing

										none										none

			Authenticator	data			Authenticator	data

										none										none

		9.2.	Transaction	authorization		9.2.	Transaction	authorization

			This	authentication	extension	allows	for	a	simple	form	of	transaction			This	authentication	extension	allows	for	a	simple	form	of	transaction
			authorization.	A	Relying	Party	can	specify	a	prompt	string,	intended			authorization.	A	Relying	Party	can	specify	a	prompt	string,	intended
			for	display	on	a	trusted	device	on	the	authenticator.			for	display	on	a	trusted	device	on	the	authenticator.

			Extension	identifier			Extension	identifier

										webauthn_txAuthSimple										webauthn_txAuthSimple

			Client	argument			Client	argument

										A	single	UTF-8	encoded	string	prompt.										A	single	UTF-8	encoded	string	prompt.

			Client	processing			Client	processing

										None,	except	default	forwarding	of	client	argument	to										None,	except	default	forwarding	of	client	argument	to
										authenticator	argument.										authenticator	argument.

			Authenticator	argument			Authenticator	argument

										The	client	argument	encoded	as	a	CBOR	text	string	(major	type										The	client	argument	encoded	as	a	CBOR	text	string	(major	type
										3).										3).

			Authenticator	processing			Authenticator	processing

										The	authenticator	MUST	display	the	prompt	to	the	user	before										The	authenticator	MUST	display	the	prompt	to	the	user	before
										performing	the	user	verification	/	test	of	user	presence.	The										performing	the	user	verification	/	test	of	user	presence.	The
										authenticator	may	insert	line	breaks	if	needed.										authenticator	may	insert	line	breaks	if	needed.

			Authenticator	data			Authenticator	data

										A	single	UTF-8	encoded	string,	representing	the	prompt	as										A	single	UTF-8	encoded	string,	representing	the	prompt	as
										displayed	(including	any	eventual	line	breaks).										displayed	(including	any	eventual	line	breaks).

			The	generic	version	of	this	extension	allows	images	to	be	used	as			The	generic	version	of	this	extension	allows	images	to	be	used	as
			prompts	as	well.	This	allows	authenticators	without	a	font	rendering			prompts	as	well.	This	allows	authenticators	without	a	font	rendering
			engine	to	be	used	and	also	supports	a	richer	visual	appearance.			engine	to	be	used	and	also	supports	a	richer	visual	appearance.

			Extension	identifier			Extension	identifier

										webauthn_txAuthGeneric										webauthn_txAuthGeneric
45/72



/Users/jehodges/Documents/work/standards/W3C/webauthn/index-vgb-u2f-attestation-0d0fcea.txt,	Top	line:	2782

			Client	argument			Client	argument

										A	CBOR	map	with	one	pair	of	data	items	(CBOR	tagged	as	0xa1).										A	CBOR	map	with	one	pair	of	data	items	(CBOR	tagged	as	0xa1).
										The	pair	of	data	items	consists	of										The	pair	of	data	items	consists	of

									1.	one	UTF-8	encoded	string	contentType,	containing	the	MIME-Type									1.	one	UTF-8	encoded	string	contentType,	containing	the	MIME-Type
												of	the	content,	e.g.	"image/png"												of	the	content,	e.g.	"image/png"
									2.	and	the	content	itself,	encoded	as	CBOR	byte	array.									2.	and	the	content	itself,	encoded	as	CBOR	byte	array.

			Client	processing			Client	processing

										None,	except	default	forwarding	of	client	argument	to										None,	except	default	forwarding	of	client	argument	to
										authenticator	argument.										authenticator	argument.

			Authenticator	argument			Authenticator	argument

										The	client	argument	encoded	as	a	CBOR	map.										The	client	argument	encoded	as	a	CBOR	map.

			Authenticator	processing			Authenticator	processing

										The	authenticator	MUST	display	the	content	to	the	user	before										The	authenticator	MUST	display	the	content	to	the	user	before
										performing	the	user	verification	/	test	of	user	presence.	The										performing	the	user	verification	/	test	of	user	presence.	The
										authenticator	may	add	other	information	below	the	content.	No										authenticator	may	add	other	information	below	the	content.	No
										changes	are	allowed	to	the	content	itself,	i.e.,	inside	content										changes	are	allowed	to	the	content	itself,	i.e.,	inside	content
										boundary	box.										boundary	box.

			Authenticator	data			Authenticator	data

										The	hash	value	of	the	content	which	was	displayed.	The										The	hash	value	of	the	content	which	was	displayed.	The
										authenticator	MUST	use	the	same	hash	algorithm	as	it	uses	for										authenticator	MUST	use	the	same	hash	algorithm	as	it	uses	for
										the	signature	itself.										the	signature	itself.

		9.3.	Authenticator	Selection	Extension		9.3.	Authenticator	Selection	Extension

			This	registration	extension	allows	a	Relying	Party	to	guide	the			This	registration	extension	allows	a	Relying	Party	to	guide	the
			selection	of	the	authenticator	that	will	be	leveraged	when	creating	the			selection	of	the	authenticator	that	will	be	leveraged	when	creating	the
			credential.	It	is	intended	primarily	for	Relying	Parties	that	wish	to			credential.	It	is	intended	primarily	for	Relying	Parties	that	wish	to
			tightly	control	the	experience	around	credential	creation.			tightly	control	the	experience	around	credential	creation.

			Extension	identifier			Extension	identifier

										webauthn_authnSel										webauthn_authnSel

			Client	argument			Client	argument

										A	sequence	of	AAGUIDs:										A	sequence	of	AAGUIDs:

typedef	sequence	<	AAGUID	>	AuthenticatorSelectionList;typedef	sequence	<	AAGUID	>	AuthenticatorSelectionList;

										Each	AAGUID	corresponds	to	an	authenticator	model	that	is										Each	AAGUID	corresponds	to	an	authenticator	model	that	is
										acceptable	to	the	Relying	Party	for	this	credential	creation.										acceptable	to	the	Relying	Party	for	this	credential	creation.
										The	list	is	ordered	by	decreasing	preference.										The	list	is	ordered	by	decreasing	preference.

										An	AAGUID	is	defined	as	an	array	containing	the	globally	unique										An	AAGUID	is	defined	as	an	array	containing	the	globally	unique
										identifier	of	the	authenticator	model	being	sought.										identifier	of	the	authenticator	model	being	sought.

typedef	BufferSource	AAGUID;typedef	BufferSource	AAGUID;

			Client	processing			Client	processing

										This	extension	can	only	be	used	during	makeCredential().	If	the										This	extension	can	only	be	used	during	makeCredential().	If	the

/Users/jehodges/Documents/work/standards/W3C/webauthn/index-vgb-u2f-attestation-dc90eab.txt,	Top	line:	2773

			Client	argument			Client	argument

										A	CBOR	map	with	one	pair	of	data	items	(CBOR	tagged	as	0xa1).										A	CBOR	map	with	one	pair	of	data	items	(CBOR	tagged	as	0xa1).
										The	pair	of	data	items	consists	of										The	pair	of	data	items	consists	of

									1.	one	UTF-8	encoded	string	contentType,	containing	the	MIME-Type									1.	one	UTF-8	encoded	string	contentType,	containing	the	MIME-Type
												of	the	content,	e.g.	"image/png"												of	the	content,	e.g.	"image/png"
									2.	and	the	content	itself,	encoded	as	CBOR	byte	array.									2.	and	the	content	itself,	encoded	as	CBOR	byte	array.

			Client	processing			Client	processing

										None,	except	default	forwarding	of	client	argument	to										None,	except	default	forwarding	of	client	argument	to
										authenticator	argument.										authenticator	argument.

			Authenticator	argument			Authenticator	argument

										The	client	argument	encoded	as	a	CBOR	map.										The	client	argument	encoded	as	a	CBOR	map.

			Authenticator	processing			Authenticator	processing

										The	authenticator	MUST	display	the	content	to	the	user	before										The	authenticator	MUST	display	the	content	to	the	user	before
										performing	the	user	verification	/	test	of	user	presence.	The										performing	the	user	verification	/	test	of	user	presence.	The
										authenticator	may	add	other	information	below	the	content.	No										authenticator	may	add	other	information	below	the	content.	No
										changes	are	allowed	to	the	content	itself,	i.e.,	inside	content										changes	are	allowed	to	the	content	itself,	i.e.,	inside	content
										boundary	box.										boundary	box.

			Authenticator	data			Authenticator	data

										The	hash	value	of	the	content	which	was	displayed.	The										The	hash	value	of	the	content	which	was	displayed.	The
										authenticator	MUST	use	the	same	hash	algorithm	as	it	uses	for										authenticator	MUST	use	the	same	hash	algorithm	as	it	uses	for
										the	signature	itself.										the	signature	itself.

		9.3.	Authenticator	Selection	Extension		9.3.	Authenticator	Selection	Extension

			This	registration	extension	allows	a	Relying	Party	to	guide	the			This	registration	extension	allows	a	Relying	Party	to	guide	the
			selection	of	the	authenticator	that	will	be	leveraged	when	creating	the			selection	of	the	authenticator	that	will	be	leveraged	when	creating	the
			credential.	It	is	intended	primarily	for	Relying	Parties	that	wish	to			credential.	It	is	intended	primarily	for	Relying	Parties	that	wish	to
			tightly	control	the	experience	around	credential	creation.			tightly	control	the	experience	around	credential	creation.

			Extension	identifier			Extension	identifier

										webauthn_authnSel										webauthn_authnSel

			Client	argument			Client	argument

										A	sequence	of	AAGUIDs:										A	sequence	of	AAGUIDs:

typedef	sequence	<	AAGUID	>	AuthenticatorSelectionList;typedef	sequence	<	AAGUID	>	AuthenticatorSelectionList;

										Each	AAGUID	corresponds	to	an	authenticator	model	that	is										Each	AAGUID	corresponds	to	an	authenticator	model	that	is
										acceptable	to	the	Relying	Party	for	this	credential	creation.										acceptable	to	the	Relying	Party	for	this	credential	creation.
										The	list	is	ordered	by	decreasing	preference.										The	list	is	ordered	by	decreasing	preference.

										An	AAGUID	is	defined	as	an	array	containing	the	globally	unique										An	AAGUID	is	defined	as	an	array	containing	the	globally	unique
										identifier	of	the	authenticator	model	being	sought.										identifier	of	the	authenticator	model	being	sought.

typedef	BufferSource	AAGUID;typedef	BufferSource	AAGUID;

			Client	processing			Client	processing

										This	extension	can	only	be	used	during	makeCredential().	If	the										This	extension	can	only	be	used	during	makeCredential().	If	the
46/72



/Users/jehodges/Documents/work/standards/W3C/webauthn/index-vgb-u2f-attestation-0d0fcea.txt,	Top	line:	2844

										client	supports	the	Authenticator	Selection	Extension,	it	MUST										client	supports	the	Authenticator	Selection	Extension,	it	MUST
										use	the	first	available	authenticator	whose	AAGUID	is	present	in										use	the	first	available	authenticator	whose	AAGUID	is	present	in
										the	AuthenticatorSelectionList.	If	none	of	the	available										the	AuthenticatorSelectionList.	If	none	of	the	available
										authenticators	match	a	provided	AAGUID,	the	client	MUST	select										authenticators	match	a	provided	AAGUID,	the	client	MUST	select
										an	authenticator	from	among	the	available	authenticators	to										an	authenticator	from	among	the	available	authenticators	to
										generate	the	credential.										generate	the	credential.

			Authenticator	argument			Authenticator	argument

										There	is	no	authenticator	argument.										There	is	no	authenticator	argument.

			Authenticator	processing			Authenticator	processing

										None.										None.

		9.4.	SupportedExtensions	Extension		9.4.	SupportedExtensions	Extension

			Extension	identifier			Extension	identifier

										webauthn_exts										webauthn_exts

			Client	argument			Client	argument

										The	Boolean	value	true	to	indicate	that	this	extension	is										The	Boolean	value	true	to	indicate	that	this	extension	is
										requested	by	the	Relying	Party.										requested	by	the	Relying	Party.

			Client	processing			Client	processing

										None,	except	default	forwarding	of	client	argument	to										None,	except	default	forwarding	of	client	argument	to
										authenticator	argument.										authenticator	argument.

			Authenticator	argument			Authenticator	argument

										The	Boolean	value	true,	encoded	in	CBOR	(major	type	7,	value										The	Boolean	value	true,	encoded	in	CBOR	(major	type	7,	value
										21).										21).

			Authenticator	processing			Authenticator	processing

										The	authenticator	augments	the	authenticator	data	with	a	list	of										The	authenticator	augments	the	authenticator	data	with	a	list	of
										extensions	that	the	authenticator	supports,	as	defined	below.										extensions	that	the	authenticator	supports,	as	defined	below.
										This	extension	can	be	added	to	attestation	objects.										This	extension	can	be	added	to	attestation	objects.

			Authenticator	data			Authenticator	data

										The	SupportedExtensions	extension	is	a	list	(CBOR	array)	of										The	SupportedExtensions	extension	is	a	list	(CBOR	array)	of
										extension	identifiers	(UTF-8	encoded	strings).										extension	identifiers	(UTF-8	encoded	strings).

		9.5.	User	Verification	Index	(UVI)	Extension		9.5.	User	Verification	Index	(UVI)	Extension

			Extension	identifier			Extension	identifier

										webauthn_uvi										webauthn_uvi

			Client	argument			Client	argument

										The	Boolean	value	true	to	indicate	that	this	extension	is										The	Boolean	value	true	to	indicate	that	this	extension	is
										requested	by	the	Relying	Party.										requested	by	the	Relying	Party.

			Client	processing			Client	processing

										None,	except	default	forwarding	of	client	argument	to										None,	except	default	forwarding	of	client	argument	to
										authenticator	argument.										authenticator	argument.

/Users/jehodges/Documents/work/standards/W3C/webauthn/index-vgb-u2f-attestation-dc90eab.txt,	Top	line:	2835

										client	supports	the	Authenticator	Selection	Extension,	it	MUST										client	supports	the	Authenticator	Selection	Extension,	it	MUST
										use	the	first	available	authenticator	whose	AAGUID	is	present	in										use	the	first	available	authenticator	whose	AAGUID	is	present	in
										the	AuthenticatorSelectionList.	If	none	of	the	available										the	AuthenticatorSelectionList.	If	none	of	the	available
										authenticators	match	a	provided	AAGUID,	the	client	MUST	select										authenticators	match	a	provided	AAGUID,	the	client	MUST	select
										an	authenticator	from	among	the	available	authenticators	to										an	authenticator	from	among	the	available	authenticators	to
										generate	the	credential.										generate	the	credential.

			Authenticator	argument			Authenticator	argument

										There	is	no	authenticator	argument.										There	is	no	authenticator	argument.

			Authenticator	processing			Authenticator	processing

										None.										None.

		9.4.	SupportedExtensions	Extension		9.4.	SupportedExtensions	Extension

			Extension	identifier			Extension	identifier

										webauthn_exts										webauthn_exts

			Client	argument			Client	argument

										The	Boolean	value	true	to	indicate	that	this	extension	is										The	Boolean	value	true	to	indicate	that	this	extension	is
										requested	by	the	Relying	Party.										requested	by	the	Relying	Party.

			Client	processing			Client	processing

										None,	except	default	forwarding	of	client	argument	to										None,	except	default	forwarding	of	client	argument	to
										authenticator	argument.										authenticator	argument.

			Authenticator	argument			Authenticator	argument

										The	Boolean	value	true,	encoded	in	CBOR	(major	type	7,	value										The	Boolean	value	true,	encoded	in	CBOR	(major	type	7,	value
										21).										21).

			Authenticator	processing			Authenticator	processing

										The	authenticator	augments	the	authenticator	data	with	a	list	of										The	authenticator	augments	the	authenticator	data	with	a	list	of
										extensions	that	the	authenticator	supports,	as	defined	below.										extensions	that	the	authenticator	supports,	as	defined	below.
										This	extension	can	be	added	to	attestation	objects.										This	extension	can	be	added	to	attestation	objects.

			Authenticator	data			Authenticator	data

										The	SupportedExtensions	extension	is	a	list	(CBOR	array)	of										The	SupportedExtensions	extension	is	a	list	(CBOR	array)	of
										extension	identifiers	(UTF-8	encoded	strings).										extension	identifiers	(UTF-8	encoded	strings).

		9.5.	User	Verification	Index	(UVI)	Extension		9.5.	User	Verification	Index	(UVI)	Extension

			Extension	identifier			Extension	identifier

										webauthn_uvi										webauthn_uvi

			Client	argument			Client	argument

										The	Boolean	value	true	to	indicate	that	this	extension	is										The	Boolean	value	true	to	indicate	that	this	extension	is
										requested	by	the	Relying	Party.										requested	by	the	Relying	Party.

			Client	processing			Client	processing

										None,	except	default	forwarding	of	client	argument	to										None,	except	default	forwarding	of	client	argument	to
										authenticator	argument.										authenticator	argument.

47/72



/Users/jehodges/Documents/work/standards/W3C/webauthn/index-vgb-u2f-attestation-0d0fcea.txt,	Top	line:	2906

			Authenticator	argument			Authenticator	argument

										The	Boolean	value	true,	encoded	in	CBOR	(major	type	7,	value										The	Boolean	value	true,	encoded	in	CBOR	(major	type	7,	value
										21).										21).

			Authenticator	processing			Authenticator	processing

										The	authenticator	augments	the	authenticator	data	with	a	user										The	authenticator	augments	the	authenticator	data	with	a	user
										verification	index	indicating	the	method	used	by	the	user	to										verification	index	indicating	the	method	used	by	the	user	to
										authorize	the	operation,	as	defined	below.	This	extension	can	be										authorize	the	operation,	as	defined	below.	This	extension	can	be
										added	to	attestation	objects	and	assertions.										added	to	attestation	objects	and	assertions.

			Authenticator	data			Authenticator	data

										The	user	verification	index	(UVI)	is	a	value	uniquely										The	user	verification	index	(UVI)	is	a	value	uniquely
										identifying	a	user	verification	data	record.	The	UVI	is	encoded										identifying	a	user	verification	data	record.	The	UVI	is	encoded
										as	CBOR	byte	string	(type	0x58).	Each	UVI	value	MUST	be	specific										as	CBOR	byte	string	(type	0x58).	Each	UVI	value	MUST	be	specific
										to	the	related	key	(in	order	to	provide	unlinkability).	It	also										to	the	related	key	(in	order	to	provide	unlinkability).	It	also
										must	contain	sufficient	entropy	that	makes	guessing	impractical.										must	contain	sufficient	entropy	that	makes	guessing	impractical.
										UVI	values	MUST	NOT	be	reused	by	the	Authenticator	(for	other										UVI	values	MUST	NOT	be	reused	by	the	Authenticator	(for	other
										biometric	data	or	users).										biometric	data	or	users).

										The	UVI	data	can	be	used	by	servers	to	understand	whether	an										The	UVI	data	can	be	used	by	servers	to	understand	whether	an
										authentication	was	authorized	by	the	exact	same	biometric	data										authentication	was	authorized	by	the	exact	same	biometric	data
										as	the	initial	key	generation.	This	allows	the	detection	and										as	the	initial	key	generation.	This	allows	the	detection	and
										prevention	of	"friendly	fraud".										prevention	of	"friendly	fraud".

										As	an	example,	the	UVI	could	be	computed	as	SHA256(KeyID	|										As	an	example,	the	UVI	could	be	computed	as	SHA256(KeyID	|
										SHA256(rawUVI)),	where	the	rawUVI	reflects	(a)	the	biometric										SHA256(rawUVI)),	where	the	rawUVI	reflects	(a)	the	biometric
										reference	data,	(b)	the	related	OS	level	user	ID	and	(c)	an										reference	data,	(b)	the	related	OS	level	user	ID	and	(c)	an
										identifier	which	changes	whenever	a	factory	reset	is	performed										identifier	which	changes	whenever	a	factory	reset	is	performed
										for	the	device,	e.g.	rawUVI	=	biometricReferenceData	|										for	the	device,	e.g.	rawUVI	=	biometricReferenceData	|
										OSLevelUserID	|	FactoryResetCounter.										OSLevelUserID	|	FactoryResetCounter.

										Servers	supporting	UVI	extensions	MUST	support	a	length	of	up	to										Servers	supporting	UVI	extensions	MUST	support	a	length	of	up	to
										32	bytes	for	the	UVI	value.										32	bytes	for	the	UVI	value.

										Example	for	authenticatorData	containing	one	UVI	extension										Example	for	authenticatorData	containing	one	UVI	extension

...																																									--	RP	ID	hash	(32	bytes)...																																									--	RP	ID	hash	(32	bytes)
81																																										--	TUP	and	ED	set81																																										--	TUP	and	ED	set
00	00	00	01																																	--	(initial)	signature	counter00	00	00	01																																	--	(initial)	signature	counter
...																																									--	all	public	key	alg	etc....																																									--	all	public	key	alg	etc.
A1																																										--	extension:	CBOR	map	of	one	elemenA1																																										--	extension:	CBOR	map	of	one	elemen
tt
				6C																																						--	Key	1:	CBOR	text	string	of	11	byt				6C																																						--	Key	1:	CBOR	text	string	of	11	byt
eses
								77	65	62	61	75	74	68	6E	5F	75	76	69	--	"webauthn_uvi"	UTF-8	encoded	stri								77	65	62	61	75	74	68	6E	5F	75	76	69	--	"webauthn_uvi"	UTF-8	encoded	stri
ngng
				58	20																																			--	Value	1:	CBOR	byte	string	with	0x				58	20																																			--	Value	1:	CBOR	byte	string	with	0x
20	bytes20	bytes
								00	43	B8	E3	BE	27	95	8C													--	the	UVI	value	itself								00	43	B8	E3	BE	27	95	8C													--	the	UVI	value	itself
								28	D5	74	BF	46	8A	85	CF								28	D5	74	BF	46	8A	85	CF
								46	9A	14	F0	E5	16	69	31								46	9A	14	F0	E5	16	69	31
								DA	4B	CF	FF	C1	BB	11	32								DA	4B	CF	FF	C1	BB	11	32
								82								82

		9.6.	Location	Extension		9.6.	Location	Extension

			Extension	identifier			Extension	identifier

/Users/jehodges/Documents/work/standards/W3C/webauthn/index-vgb-u2f-attestation-dc90eab.txt,	Top	line:	2897

			Authenticator	argument			Authenticator	argument

										The	Boolean	value	true,	encoded	in	CBOR	(major	type	7,	value										The	Boolean	value	true,	encoded	in	CBOR	(major	type	7,	value
										21).										21).

			Authenticator	processing			Authenticator	processing

										The	authenticator	augments	the	authenticator	data	with	a	user										The	authenticator	augments	the	authenticator	data	with	a	user
										verification	index	indicating	the	method	used	by	the	user	to										verification	index	indicating	the	method	used	by	the	user	to
										authorize	the	operation,	as	defined	below.	This	extension	can	be										authorize	the	operation,	as	defined	below.	This	extension	can	be
										added	to	attestation	objects	and	assertions.										added	to	attestation	objects	and	assertions.

			Authenticator	data			Authenticator	data

										The	user	verification	index	(UVI)	is	a	value	uniquely										The	user	verification	index	(UVI)	is	a	value	uniquely
										identifying	a	user	verification	data	record.	The	UVI	is	encoded										identifying	a	user	verification	data	record.	The	UVI	is	encoded
										as	CBOR	byte	string	(type	0x58).	Each	UVI	value	MUST	be	specific										as	CBOR	byte	string	(type	0x58).	Each	UVI	value	MUST	be	specific
										to	the	related	key	(in	order	to	provide	unlinkability).	It	also										to	the	related	key	(in	order	to	provide	unlinkability).	It	also
										must	contain	sufficient	entropy	that	makes	guessing	impractical.										must	contain	sufficient	entropy	that	makes	guessing	impractical.
										UVI	values	MUST	NOT	be	reused	by	the	Authenticator	(for	other										UVI	values	MUST	NOT	be	reused	by	the	Authenticator	(for	other
										biometric	data	or	users).										biometric	data	or	users).

										The	UVI	data	can	be	used	by	servers	to	understand	whether	an										The	UVI	data	can	be	used	by	servers	to	understand	whether	an
										authentication	was	authorized	by	the	exact	same	biometric	data										authentication	was	authorized	by	the	exact	same	biometric	data
										as	the	initial	key	generation.	This	allows	the	detection	and										as	the	initial	key	generation.	This	allows	the	detection	and
										prevention	of	"friendly	fraud".										prevention	of	"friendly	fraud".

										As	an	example,	the	UVI	could	be	computed	as	SHA256(KeyID	|										As	an	example,	the	UVI	could	be	computed	as	SHA256(KeyID	|
										SHA256(rawUVI)),	where	the	rawUVI	reflects	(a)	the	biometric										SHA256(rawUVI)),	where	the	rawUVI	reflects	(a)	the	biometric
										reference	data,	(b)	the	related	OS	level	user	ID	and	(c)	an										reference	data,	(b)	the	related	OS	level	user	ID	and	(c)	an
										identifier	which	changes	whenever	a	factory	reset	is	performed										identifier	which	changes	whenever	a	factory	reset	is	performed
										for	the	device,	e.g.	rawUVI	=	biometricReferenceData	|										for	the	device,	e.g.	rawUVI	=	biometricReferenceData	|
										OSLevelUserID	|	FactoryResetCounter.										OSLevelUserID	|	FactoryResetCounter.

										Servers	supporting	UVI	extensions	MUST	support	a	length	of	up	to										Servers	supporting	UVI	extensions	MUST	support	a	length	of	up	to
										32	bytes	for	the	UVI	value.										32	bytes	for	the	UVI	value.

										Example	for	authenticatorData	containing	one	UVI	extension										Example	for	authenticatorData	containing	one	UVI	extension

...																																									--	RP	ID	hash	(32	bytes)...																																									--	RP	ID	hash	(32	bytes)
81																																										--	TUP	and	ED	set81																																										--	TUP	and	ED	set
00	00	00	01																																	--	(initial)	signature	counter00	00	00	01																																	--	(initial)	signature	counter
...																																									--	all	public	key	alg	etc....																																									--	all	public	key	alg	etc.
A1																																										--	extension:	CBOR	map	of	one	elemenA1																																										--	extension:	CBOR	map	of	one	elemen
tt
				6C																																						--	Key	1:	CBOR	text	string	of	11	byt				6C																																						--	Key	1:	CBOR	text	string	of	11	byt
eses
								77	65	62	61	75	74	68	6E	5F	75	76	69	--	"webauthn_uvi"	UTF-8	encoded	stri								77	65	62	61	75	74	68	6E	5F	75	76	69	--	"webauthn_uvi"	UTF-8	encoded	stri
ngng
				58	20																																			--	Value	1:	CBOR	byte	string	with	0x				58	20																																			--	Value	1:	CBOR	byte	string	with	0x
20	bytes20	bytes
								00	43	B8	E3	BE	27	95	8C													--	the	UVI	value	itself								00	43	B8	E3	BE	27	95	8C													--	the	UVI	value	itself
								28	D5	74	BF	46	8A	85	CF								28	D5	74	BF	46	8A	85	CF
								46	9A	14	F0	E5	16	69	31								46	9A	14	F0	E5	16	69	31
								DA	4B	CF	FF	C1	BB	11	32								DA	4B	CF	FF	C1	BB	11	32
								82								82

		9.6.	Location	Extension		9.6.	Location	Extension

			Extension	identifier			Extension	identifier

48/72



/Users/jehodges/Documents/work/standards/W3C/webauthn/index-vgb-u2f-attestation-0d0fcea.txt,	Top	line:	2968

										webauthn_loc										webauthn_loc

			Client	argument			Client	argument

										The	Boolean	value	true	to	indicate	that	this	extension	is										The	Boolean	value	true	to	indicate	that	this	extension	is
										requested	by	the	Relying	Party.										requested	by	the	Relying	Party.

			Client	processing			Client	processing

										None,	except	default	forwarding	of	client	argument	to										None,	except	default	forwarding	of	client	argument	to
										authenticator	argument.										authenticator	argument.

			Authenticator	argument			Authenticator	argument

										The	Boolean	value	true,	encoded	in	CBOR	(major	type	7,	value										The	Boolean	value	true,	encoded	in	CBOR	(major	type	7,	value
										21).										21).

			Authenticator	processing			Authenticator	processing

										If	the	authenticator	does	not	support	the	extension,	then	the										If	the	authenticator	does	not	support	the	extension,	then	the
										authenticator	MUST	ignore	the	extension	request.	If	the										authenticator	MUST	ignore	the	extension	request.	If	the
										authenticator	accepts	the	extension,	then	the	authenticator										authenticator	accepts	the	extension,	then	the	authenticator
										SHOULD	only	add	this	extension	data	to	a	packed	attestation	or										SHOULD	only	add	this	extension	data	to	a	packed	attestation	or
										assertion.										assertion.

			Authenticator	data			Authenticator	data

										If	the	authenticator	accepts	the	extension	request,	then										If	the	authenticator	accepts	the	extension	request,	then
										authenticator	data	SHOULD	provide	location	data	in	the	form	of	a										authenticator	data	SHOULD	provide	location	data	in	the	form	of	a
										CBOR-encoded	map,	with	the	first	value	being	the	extension										CBOR-encoded	map,	with	the	first	value	being	the	extension
										identifier	and	the	second	being	an	array	of	returned	values.	The										identifier	and	the	second	being	an	array	of	returned	values.	The
										array	elements	SHOULD	be	derived	from	(key,value)	pairings	for										array	elements	SHOULD	be	derived	from	(key,value)	pairings	for
										each	location	attribute	that	the	authenticator	supports.	The										each	location	attribute	that	the	authenticator	supports.	The
										following	is	an	example	of	authenticatorData	where	the	returned										following	is	an	example	of	authenticatorData	where	the	returned
										array	is	comprised	of	a	{longitude,	latitude,	altitude}	triplet,										array	is	comprised	of	a	{longitude,	latitude,	altitude}	triplet,
										following	the	coordinate	representation	defined	in	The	W3C										following	the	coordinate	representation	defined	in	The	W3C
										Geolocation	API	Specification.										Geolocation	API	Specification.

...																																									--	RP	ID	hash	(32	bytes)...																																									--	RP	ID	hash	(32	bytes)
81																																										--	TUP	and	ED	set81																																										--	TUP	and	ED	set
00	00	00	01																																	--	(initial)	signature	counter00	00	00	01																																	--	(initial)	signature	counter
...																																									--	all	public	key	alg	etc....																																									--	all	public	key	alg	etc.
A1																																										--	extension:	CBOR	map	of	one	elemenA1																																										--	extension:	CBOR	map	of	one	elemen
tt
				6C																																						--	Value	1:	CBOR	text	string	of	11	b				6C																																						--	Value	1:	CBOR	text	string	of	11	b
ytesytes
								77	65	62	61	75	74	68	6E	5F	6C	6F	63	--	"webauthn_loc"	UTF-8	encoded	stri								77	65	62	61	75	74	68	6E	5F	6C	6F	63	--	"webauthn_loc"	UTF-8	encoded	stri
ngng
				86																																						--	Value	2:	array	of	6	elements				86																																						--	Value	2:	array	of	6	elements
								68																		--	Element	1:		CBOR	text	string	of	8	bytes								68																		--	Element	1:		CBOR	text	string	of	8	bytes
											6C	61	74	69	74	75	64	65										--	"latitude"	UTF-8	encoded	string											6C	61	74	69	74	75	64	65										--	"latitude"	UTF-8	encoded	string
								FB	...																		--	Element	2:		Latitude	as	CBOR	encoded	double-p								FB	...																		--	Element	2:		Latitude	as	CBOR	encoded	double-p
recision	floatrecision	float
								69																		--	Element	3:		CBOR	text	string	of	9	bytes								69																		--	Element	3:		CBOR	text	string	of	9	bytes
											6C	6F	6E	67	69	74	75	64	65							--	"longitude"	UTF-8	encoded	string											6C	6F	6E	67	69	74	75	64	65							--	"longitude"	UTF-8	encoded	string
								FB	...																		--	Element	4:		Longitude	as	CBOR	encoded	double-								FB	...																		--	Element	4:		Longitude	as	CBOR	encoded	double-
precision	floatprecision	float
								68																		--	Element	5:		CBOR	text	string	of	8	bytes								68																		--	Element	5:		CBOR	text	string	of	8	bytes
										61	6C	74	69	74	75	64	65											--	"altitude"	UTF-8	encoded	string										61	6C	74	69	74	75	64	65											--	"altitude"	UTF-8	encoded	string
								FB	...																		--	Element	6:		Altitude	as	CBOR	encoded	double-p								FB	...																		--	Element	6:		Altitude	as	CBOR	encoded	double-p
recision	floatrecision	float

/Users/jehodges/Documents/work/standards/W3C/webauthn/index-vgb-u2f-attestation-dc90eab.txt,	Top	line:	2959

										webauthn_loc										webauthn_loc

			Client	argument			Client	argument

										The	Boolean	value	true	to	indicate	that	this	extension	is										The	Boolean	value	true	to	indicate	that	this	extension	is
										requested	by	the	Relying	Party.										requested	by	the	Relying	Party.

			Client	processing			Client	processing

										None,	except	default	forwarding	of	client	argument	to										None,	except	default	forwarding	of	client	argument	to
										authenticator	argument.										authenticator	argument.

			Authenticator	argument			Authenticator	argument

										The	Boolean	value	true,	encoded	in	CBOR	(major	type	7,	value										The	Boolean	value	true,	encoded	in	CBOR	(major	type	7,	value
										21).										21).

			Authenticator	processing			Authenticator	processing

										If	the	authenticator	does	not	support	the	extension,	then	the										If	the	authenticator	does	not	support	the	extension,	then	the
										authenticator	MUST	ignore	the	extension	request.	If	the										authenticator	MUST	ignore	the	extension	request.	If	the
										authenticator	accepts	the	extension,	then	the	authenticator										authenticator	accepts	the	extension,	then	the	authenticator
										SHOULD	only	add	this	extension	data	to	a	packed	attestation	or										SHOULD	only	add	this	extension	data	to	a	packed	attestation	or
										assertion.										assertion.

			Authenticator	data			Authenticator	data

										If	the	authenticator	accepts	the	extension	request,	then										If	the	authenticator	accepts	the	extension	request,	then
										authenticator	data	SHOULD	provide	location	data	in	the	form	of	a										authenticator	data	SHOULD	provide	location	data	in	the	form	of	a
										CBOR-encoded	map,	with	the	first	value	being	the	extension										CBOR-encoded	map,	with	the	first	value	being	the	extension
										identifier	and	the	second	being	an	array	of	returned	values.	The										identifier	and	the	second	being	an	array	of	returned	values.	The
										array	elements	SHOULD	be	derived	from	(key,value)	pairings	for										array	elements	SHOULD	be	derived	from	(key,value)	pairings	for
										each	location	attribute	that	the	authenticator	supports.	The										each	location	attribute	that	the	authenticator	supports.	The
										following	is	an	example	of	authenticatorData	where	the	returned										following	is	an	example	of	authenticatorData	where	the	returned
										array	is	comprised	of	a	{longitude,	latitude,	altitude}	triplet,										array	is	comprised	of	a	{longitude,	latitude,	altitude}	triplet,
										following	the	coordinate	representation	defined	in	The	W3C										following	the	coordinate	representation	defined	in	The	W3C
										Geolocation	API	Specification.										Geolocation	API	Specification.

...																																									--	RP	ID	hash	(32	bytes)...																																									--	RP	ID	hash	(32	bytes)
81																																										--	TUP	and	ED	set81																																										--	TUP	and	ED	set
00	00	00	01																																	--	(initial)	signature	counter00	00	00	01																																	--	(initial)	signature	counter
...																																									--	all	public	key	alg	etc....																																									--	all	public	key	alg	etc.
A1																																										--	extension:	CBOR	map	of	one	elemenA1																																										--	extension:	CBOR	map	of	one	elemen
tt
				6C																																						--	Value	1:	CBOR	text	string	of	11	b				6C																																						--	Value	1:	CBOR	text	string	of	11	b
ytesytes
								77	65	62	61	75	74	68	6E	5F	6C	6F	63	--	"webauthn_loc"	UTF-8	encoded	stri								77	65	62	61	75	74	68	6E	5F	6C	6F	63	--	"webauthn_loc"	UTF-8	encoded	stri
ngng
				86																																						--	Value	2:	array	of	6	elements				86																																						--	Value	2:	array	of	6	elements
								68																		--	Element	1:		CBOR	text	string	of	8	bytes								68																		--	Element	1:		CBOR	text	string	of	8	bytes
											6C	61	74	69	74	75	64	65										--	"latitude"	UTF-8	encoded	string											6C	61	74	69	74	75	64	65										--	"latitude"	UTF-8	encoded	string
								FB	...																		--	Element	2:		Latitude	as	CBOR	encoded	double-p								FB	...																		--	Element	2:		Latitude	as	CBOR	encoded	double-p
recision	floatrecision	float
								69																		--	Element	3:		CBOR	text	string	of	9	bytes								69																		--	Element	3:		CBOR	text	string	of	9	bytes
											6C	6F	6E	67	69	74	75	64	65							--	"longitude"	UTF-8	encoded	string											6C	6F	6E	67	69	74	75	64	65							--	"longitude"	UTF-8	encoded	string
								FB	...																		--	Element	4:		Longitude	as	CBOR	encoded	double-								FB	...																		--	Element	4:		Longitude	as	CBOR	encoded	double-
precision	floatprecision	float
								68																		--	Element	5:		CBOR	text	string	of	8	bytes								68																		--	Element	5:		CBOR	text	string	of	8	bytes
										61	6C	74	69	74	75	64	65											--	"altitude"	UTF-8	encoded	string										61	6C	74	69	74	75	64	65											--	"altitude"	UTF-8	encoded	string
								FB	...																		--	Element	6:		Altitude	as	CBOR	encoded	double-p								FB	...																		--	Element	6:		Altitude	as	CBOR	encoded	double-p
recision	floatrecision	float

49/72



/Users/jehodges/Documents/work/standards/W3C/webauthn/index-vgb-u2f-attestation-0d0fcea.txt,	Top	line:	3030

		9.7.	User	Verification	Mode	(UVM)	Extension		9.7.	User	Verification	Mode	(UVM)	Extension

			Extension	identifier			Extension	identifier

										webauthn_uvm										webauthn_uvm

			Client	argument			Client	argument

										The	Boolean	value	true	to	indicate	that	this	extension	is										The	Boolean	value	true	to	indicate	that	this	extension	is
										requested	by	the	WebAuthn	Relying	Party.										requested	by	the	WebAuthn	Relying	Party.

			Client	processing			Client	processing

										None,	except	default	forwarding	of	client	argument	to										None,	except	default	forwarding	of	client	argument	to
										authenticator	argument.										authenticator	argument.

			Authenticator	argument			Authenticator	argument

										The	Boolean	value	true,	encoded	in	CBOR	(major	type	7,	value										The	Boolean	value	true,	encoded	in	CBOR	(major	type	7,	value
										21).										21).

			Authenticator	processing			Authenticator	processing

										The	authenticator	augments	the	authenticator	data	with	a	user										The	authenticator	augments	the	authenticator	data	with	a	user
										verification	index	indicating	the	method	used	by	the	user	to										verification	index	indicating	the	method	used	by	the	user	to
										authorize	the	operation,	as	defined	below.	This	extension	can	be										authorize	the	operation,	as	defined	below.	This	extension	can	be
										added	to	attestation	objects	and	assertions.										added	to	attestation	objects	and	assertions.

			Authenticator	data			Authenticator	data

										Authenticators	can	report	up	to	3	different	user	verification										Authenticators	can	report	up	to	3	different	user	verification
										methods	(factors)	used	in	a	single	authentication	instance.	To										methods	(factors)	used	in	a	single	authentication	instance.	To
										accommodate	this	possibility	the	UVM	is	encoded	as	CBOR	array										accommodate	this	possibility	the	UVM	is	encoded	as	CBOR	array
										(major	type	4)	with	a	maximum	allowed	length	of	3	-										(major	type	4)	with	a	maximum	allowed	length	of	3	-

										+	Type	0x81	-	only	1	factor	was	used	for	authentication.										+	Type	0x81	-	only	1	factor	was	used	for	authentication.
										+	Type	0x82	-	2	factors	were	used.										+	Type	0x82	-	2	factors	were	used.
										+	Type	0x83	-	3	or	more	factors	were	used.										+	Type	0x83	-	3	or	more	factors	were	used.

										Each	data	item	is	in	turn	a	CBOR	array	of	length	3	(type	0x83)										Each	data	item	is	in	turn	a	CBOR	array	of	length	3	(type	0x83)
										with	the	following	data	items:										with	the	following	data	items:

										+	Data	Item	1	-	User	Verification	Method.	This	is	the										+	Data	Item	1	-	User	Verification	Method.	This	is	the
												authentication	method/factor	used	by	the	authenticator	to												authentication	method/factor	used	by	the	authenticator	to
												verify	the	user.	Available	values	are	defined	in	[FIDOReg],												verify	the	user.	Available	values	are	defined	in	[FIDOReg],
												"User	Verification	Methods"	section.	It	is	encoded	as	a	CBOR												"User	Verification	Methods"	section.	It	is	encoded	as	a	CBOR
												unsigned	integer	(Major	type	0).												unsigned	integer	(Major	type	0).
										+	Data	Item	2	-	Key	Protection	Type.	This	is	the	method	used	by										+	Data	Item	2	-	Key	Protection	Type.	This	is	the	method	used	by
												the	authenticator	to	protect	the	FIDO	registration	private	key												the	authenticator	to	protect	the	FIDO	registration	private	key
												material.	Available	values	are	defined	in	[FIDOReg],	"Key												material.	Available	values	are	defined	in	[FIDOReg],	"Key
												Protection	Types"	section.	It	is	encoded	as	a	CBOR	2	byte												Protection	Types"	section.	It	is	encoded	as	a	CBOR	2	byte
												unsigned	short	(Major	type	0).												unsigned	short	(Major	type	0).
										+	Data	Item	3	-	Matcher	Protection	Type.	This	is	the	method	used										+	Data	Item	3	-	Matcher	Protection	Type.	This	is	the	method	used
												by	the	authenticator	to	protect	the	matcher	that	performs	user												by	the	authenticator	to	protect	the	matcher	that	performs	user
												verification.	Available	values	are	defined	in	[FIDOReg],												verification.	Available	values	are	defined	in	[FIDOReg],
												"Matcher	Protection	Types"	section.	It	is	encoded	as	a	CBOR	2												"Matcher	Protection	Types"	section.	It	is	encoded	as	a	CBOR	2
												byte	unsigned	short	(Major	type	0).												byte	unsigned	short	(Major	type	0).

										This	is	repeated	for	each	factor	used	in	the	authentication										This	is	repeated	for	each	factor	used	in	the	authentication
										instance.										instance.

										If	>3	factors	can	be	used	in	an	authentication	instance	the										If	>3	factors	can	be	used	in	an	authentication	instance	the

/Users/jehodges/Documents/work/standards/W3C/webauthn/index-vgb-u2f-attestation-dc90eab.txt,	Top	line:	3021

		9.7.	User	Verification	Mode	(UVM)	Extension		9.7.	User	Verification	Mode	(UVM)	Extension

			Extension	identifier			Extension	identifier

										webauthn_uvm										webauthn_uvm

			Client	argument			Client	argument

										The	Boolean	value	true	to	indicate	that	this	extension	is										The	Boolean	value	true	to	indicate	that	this	extension	is
										requested	by	the	WebAuthn	Relying	Party.										requested	by	the	WebAuthn	Relying	Party.

			Client	processing			Client	processing

										None,	except	default	forwarding	of	client	argument	to										None,	except	default	forwarding	of	client	argument	to
										authenticator	argument.										authenticator	argument.

			Authenticator	argument			Authenticator	argument

										The	Boolean	value	true,	encoded	in	CBOR	(major	type	7,	value										The	Boolean	value	true,	encoded	in	CBOR	(major	type	7,	value
										21).										21).

			Authenticator	processing			Authenticator	processing

										The	authenticator	augments	the	authenticator	data	with	a	user										The	authenticator	augments	the	authenticator	data	with	a	user
										verification	index	indicating	the	method	used	by	the	user	to										verification	index	indicating	the	method	used	by	the	user	to
										authorize	the	operation,	as	defined	below.	This	extension	can	be										authorize	the	operation,	as	defined	below.	This	extension	can	be
										added	to	attestation	objects	and	assertions.										added	to	attestation	objects	and	assertions.

			Authenticator	data			Authenticator	data

										Authenticators	can	report	up	to	3	different	user	verification										Authenticators	can	report	up	to	3	different	user	verification
										methods	(factors)	used	in	a	single	authentication	instance.	To										methods	(factors)	used	in	a	single	authentication	instance.	To
										accommodate	this	possibility	the	UVM	is	encoded	as	CBOR	array										accommodate	this	possibility	the	UVM	is	encoded	as	CBOR	array
										(major	type	4)	with	a	maximum	allowed	length	of	3	-										(major	type	4)	with	a	maximum	allowed	length	of	3	-

										+	Type	0x81	-	only	1	factor	was	used	for	authentication.										+	Type	0x81	-	only	1	factor	was	used	for	authentication.
										+	Type	0x82	-	2	factors	were	used.										+	Type	0x82	-	2	factors	were	used.
										+	Type	0x83	-	3	or	more	factors	were	used.										+	Type	0x83	-	3	or	more	factors	were	used.

										Each	data	item	is	in	turn	a	CBOR	array	of	length	3	(type	0x83)										Each	data	item	is	in	turn	a	CBOR	array	of	length	3	(type	0x83)
										with	the	following	data	items:										with	the	following	data	items:

										+	Data	Item	1	-	User	Verification	Method.	This	is	the										+	Data	Item	1	-	User	Verification	Method.	This	is	the
												authentication	method/factor	used	by	the	authenticator	to												authentication	method/factor	used	by	the	authenticator	to
												verify	the	user.	Available	values	are	defined	in	[FIDOReg],												verify	the	user.	Available	values	are	defined	in	[FIDOReg],
												"User	Verification	Methods"	section.	It	is	encoded	as	a	CBOR												"User	Verification	Methods"	section.	It	is	encoded	as	a	CBOR
												unsigned	integer	(Major	type	0).												unsigned	integer	(Major	type	0).
										+	Data	Item	2	-	Key	Protection	Type.	This	is	the	method	used	by										+	Data	Item	2	-	Key	Protection	Type.	This	is	the	method	used	by
												the	authenticator	to	protect	the	FIDO	registration	private	key												the	authenticator	to	protect	the	FIDO	registration	private	key
												material.	Available	values	are	defined	in	[FIDOReg],	"Key												material.	Available	values	are	defined	in	[FIDOReg],	"Key
												Protection	Types"	section.	It	is	encoded	as	a	CBOR	2	byte												Protection	Types"	section.	It	is	encoded	as	a	CBOR	2	byte
												unsigned	short	(Major	type	0).												unsigned	short	(Major	type	0).
										+	Data	Item	3	-	Matcher	Protection	Type.	This	is	the	method	used										+	Data	Item	3	-	Matcher	Protection	Type.	This	is	the	method	used
												by	the	authenticator	to	protect	the	matcher	that	performs	user												by	the	authenticator	to	protect	the	matcher	that	performs	user
												verification.	Available	values	are	defined	in	[FIDOReg],												verification.	Available	values	are	defined	in	[FIDOReg],
												"Matcher	Protection	Types"	section.	It	is	encoded	as	a	CBOR	2												"Matcher	Protection	Types"	section.	It	is	encoded	as	a	CBOR	2
												byte	unsigned	short	(Major	type	0).												byte	unsigned	short	(Major	type	0).

										This	is	repeated	for	each	factor	used	in	the	authentication										This	is	repeated	for	each	factor	used	in	the	authentication
										instance.										instance.

										If	>3	factors	can	be	used	in	an	authentication	instance	the										If	>3	factors	can	be	used	in	an	authentication	instance	the
50/72



/Users/jehodges/Documents/work/standards/W3C/webauthn/index-vgb-u2f-attestation-0d0fcea.txt,	Top	line:	3092

										authenticator	vendor	must	select	the	3	factors	it	believes	will										authenticator	vendor	must	select	the	3	factors	it	believes	will
										be	most	relevant	to	the	Server	to	include	in	the	UVM.										be	most	relevant	to	the	Server	to	include	in	the	UVM.

										Servers	supporting	the	UVM	extension	MUST	support	a	length	up	to										Servers	supporting	the	UVM	extension	MUST	support	a	length	up	to
										36	bytes	for	a	3	factor	maximum	UVM	value.										36	bytes	for	a	3	factor	maximum	UVM	value.

										Example	for	authenticatorData	containing	one	UVM	extension	for	a										Example	for	authenticatorData	containing	one	UVM	extension	for	a
										multi-factor	authentication	instance	where	2	factors	were	used:										multi-factor	authentication	instance	where	2	factors	were	used:

...																				--	RP	ID	hash	(32	bytes)...																				--	RP	ID	hash	(32	bytes)
81																					--	TUP	and	ED	set81																					--	TUP	and	ED	set
00	00	00	01												--	(initial)	signature	counter00	00	00	01												--	(initial)	signature	counter
...																				--	all	public	key	alg	etc....																				--	all	public	key	alg	etc.
A1																					--	extension:	CBOR	map	of	one	elementA1																					--	extension:	CBOR	map	of	one	element
				6C																	--	Key	1:	CBOR	text	string	of	12	bytes				6C																	--	Key	1:	CBOR	text	string	of	12	bytes
								77	65	62	61	75	74	68	6E	2E	75	76	6d	--	"webauthn_uvm"	UTF-8	encoded	stri								77	65	62	61	75	74	68	6E	2E	75	76	6d	--	"webauthn_uvm"	UTF-8	encoded	stri
ngng
				82																	--	Value	1:	CBOR	array	of	length	2	indicating	two	factor				82																	--	Value	1:	CBOR	array	of	length	2	indicating	two	factor
usageusage
								83														--	Item	1:	CBOR	array	of	length	3								83														--	Item	1:	CBOR	array	of	length	3
												02											--	Subitem	1:	CBOR	integer	for	User	Verification	Method												02											--	Subitem	1:	CBOR	integer	for	User	Verification	Method
	Fingerprint	Fingerprint
												04											--	Subitem	2:	CBOR	short	for	Key	Protection	Type	TEE												04											--	Subitem	2:	CBOR	short	for	Key	Protection	Type	TEE
												02											--	Subitem	3:	CBOR	short	for	Matcher	Protection	Type	TE												02											--	Subitem	3:	CBOR	short	for	Matcher	Protection	Type	TE
EE
								83														--	Item	2:	CBOR	array	of	length	3								83														--	Item	2:	CBOR	array	of	length	3
												04											--	Subitem	1:	CBOR	integer	for	User	Verification	Method												04											--	Subitem	1:	CBOR	integer	for	User	Verification	Method
	Passcode	Passcode
												01											--	Subitem	2:	CBOR	short	for	Key	Protection	Type	Softwa												01											--	Subitem	2:	CBOR	short	for	Key	Protection	Type	Softwa
rere
												01											--	Subitem	3:	CBOR	short	for	Matcher	Protection	Type	So												01											--	Subitem	3:	CBOR	short	for	Matcher	Protection	Type	So
ftwareftware

10.	IANA	Considerations10.	IANA	Considerations

			This	specification	registers	the	algorithm	names	"S256",	"S384",			This	specification	registers	the	algorithm	names	"S256",	"S384",
			"S512",	and	"SM3"	with	the	IANA	JSON	Web	Algorithms	registry	as	defined			"S512",	and	"SM3"	with	the	IANA	JSON	Web	Algorithms	registry	as	defined
			in	section	"Cryptographic	Algorithms	for	Digital	Signatures	and	MACs"			in	section	"Cryptographic	Algorithms	for	Digital	Signatures	and	MACs"
			in	[RFC7518].			in	[RFC7518].

			These	names	follow	the	naming	strategy	in	draft-ietf-oauth-spop-15.			These	names	follow	the	naming	strategy	in	draft-ietf-oauth-spop-15.

			Algorithm	Name																			"S256"			Algorithm	Name																			"S256"
			Algorithm	Description												The	SHA256	hash	algorithm.			Algorithm	Description												The	SHA256	hash	algorithm.
			Algorithm	Usage	Location(s)						"alg",	i.e.,	used	with	JWS.			Algorithm	Usage	Location(s)						"alg",	i.e.,	used	with	JWS.
			JOSE	Implementation	Requirements	Optional+			JOSE	Implementation	Requirements	Optional+
			Change	Controller																FIDO	Alliance			Change	Controller																FIDO	Alliance
			Specification	Documents										[FIPS-180-4]			Specification	Documents										[FIPS-180-4]
			Algorithm	Analysis	Document(s)			[SP800-107r1]			Algorithm	Analysis	Document(s)			[SP800-107r1]

			Algorithm	Name																			"S384"			Algorithm	Name																			"S384"
			Algorithm	Description												The	SHA384	hash	algorithm.			Algorithm	Description												The	SHA384	hash	algorithm.
			Algorithm	Usage	Location(s)						"alg",	i.e.,	used	with	JWS.			Algorithm	Usage	Location(s)						"alg",	i.e.,	used	with	JWS.
			JOSE	Implementation	Requirements	Optional			JOSE	Implementation	Requirements	Optional
			Change	Controller																FIDO	Alliance			Change	Controller																FIDO	Alliance
			Specification	Documents										[FIPS-180-4]			Specification	Documents										[FIPS-180-4]
			Algorithm	Analysis	Document(s)			[SP800-107r1]			Algorithm	Analysis	Document(s)			[SP800-107r1]

			Algorithm	Name																			"S512"			Algorithm	Name																			"S512"
			Algorithm	Description												The	SHA512	hash	algorithm.			Algorithm	Description												The	SHA512	hash	algorithm.
			Algorithm	Usage	Location(s)						"alg",	i.e.,	used	with	JWS.			Algorithm	Usage	Location(s)						"alg",	i.e.,	used	with	JWS.
			JOSE	Implementation	Requirements	Optional+			JOSE	Implementation	Requirements	Optional+

/Users/jehodges/Documents/work/standards/W3C/webauthn/index-vgb-u2f-attestation-dc90eab.txt,	Top	line:	3083

										authenticator	vendor	must	select	the	3	factors	it	believes	will										authenticator	vendor	must	select	the	3	factors	it	believes	will
										be	most	relevant	to	the	Server	to	include	in	the	UVM.										be	most	relevant	to	the	Server	to	include	in	the	UVM.

										Servers	supporting	the	UVM	extension	MUST	support	a	length	up	to										Servers	supporting	the	UVM	extension	MUST	support	a	length	up	to
										36	bytes	for	a	3	factor	maximum	UVM	value.										36	bytes	for	a	3	factor	maximum	UVM	value.

										Example	for	authenticatorData	containing	one	UVM	extension	for	a										Example	for	authenticatorData	containing	one	UVM	extension	for	a
										multi-factor	authentication	instance	where	2	factors	were	used:										multi-factor	authentication	instance	where	2	factors	were	used:

...																				--	RP	ID	hash	(32	bytes)...																				--	RP	ID	hash	(32	bytes)
81																					--	TUP	and	ED	set81																					--	TUP	and	ED	set
00	00	00	01												--	(initial)	signature	counter00	00	00	01												--	(initial)	signature	counter
...																				--	all	public	key	alg	etc....																				--	all	public	key	alg	etc.
A1																					--	extension:	CBOR	map	of	one	elementA1																					--	extension:	CBOR	map	of	one	element
				6C																	--	Key	1:	CBOR	text	string	of	12	bytes				6C																	--	Key	1:	CBOR	text	string	of	12	bytes
								77	65	62	61	75	74	68	6E	2E	75	76	6d	--	"webauthn_uvm"	UTF-8	encoded	stri								77	65	62	61	75	74	68	6E	2E	75	76	6d	--	"webauthn_uvm"	UTF-8	encoded	stri
ngng
				82																	--	Value	1:	CBOR	array	of	length	2	indicating	two	factor				82																	--	Value	1:	CBOR	array	of	length	2	indicating	two	factor
usageusage
								83														--	Item	1:	CBOR	array	of	length	3								83														--	Item	1:	CBOR	array	of	length	3
												02											--	Subitem	1:	CBOR	integer	for	User	Verification	Method												02											--	Subitem	1:	CBOR	integer	for	User	Verification	Method
	Fingerprint	Fingerprint
												04											--	Subitem	2:	CBOR	short	for	Key	Protection	Type	TEE												04											--	Subitem	2:	CBOR	short	for	Key	Protection	Type	TEE
												02											--	Subitem	3:	CBOR	short	for	Matcher	Protection	Type	TE												02											--	Subitem	3:	CBOR	short	for	Matcher	Protection	Type	TE
EE
								83														--	Item	2:	CBOR	array	of	length	3								83														--	Item	2:	CBOR	array	of	length	3
												04											--	Subitem	1:	CBOR	integer	for	User	Verification	Method												04											--	Subitem	1:	CBOR	integer	for	User	Verification	Method
	Passcode	Passcode
												01											--	Subitem	2:	CBOR	short	for	Key	Protection	Type	Softwa												01											--	Subitem	2:	CBOR	short	for	Key	Protection	Type	Softwa
rere
												01											--	Subitem	3:	CBOR	short	for	Matcher	Protection	Type	So												01											--	Subitem	3:	CBOR	short	for	Matcher	Protection	Type	So
ftwareftware

10.	IANA	Considerations10.	IANA	Considerations

			This	specification	registers	the	algorithm	names	"S256",	"S384",			This	specification	registers	the	algorithm	names	"S256",	"S384",
			"S512",	and	"SM3"	with	the	IANA	JSON	Web	Algorithms	registry	as	defined			"S512",	and	"SM3"	with	the	IANA	JSON	Web	Algorithms	registry	as	defined
			in	section	"Cryptographic	Algorithms	for	Digital	Signatures	and	MACs"			in	section	"Cryptographic	Algorithms	for	Digital	Signatures	and	MACs"
			in	[RFC7518].			in	[RFC7518].

			These	names	follow	the	naming	strategy	in	draft-ietf-oauth-spop-15.			These	names	follow	the	naming	strategy	in	draft-ietf-oauth-spop-15.

			Algorithm	Name																			"S256"			Algorithm	Name																			"S256"
			Algorithm	Description												The	SHA256	hash	algorithm.			Algorithm	Description												The	SHA256	hash	algorithm.
			Algorithm	Usage	Location(s)						"alg",	i.e.,	used	with	JWS.			Algorithm	Usage	Location(s)						"alg",	i.e.,	used	with	JWS.
			JOSE	Implementation	Requirements	Optional+			JOSE	Implementation	Requirements	Optional+
			Change	Controller																FIDO	Alliance			Change	Controller																FIDO	Alliance
			Specification	Documents										[FIPS-180-4]			Specification	Documents										[FIPS-180-4]
			Algorithm	Analysis	Document(s)			[SP800-107r1]			Algorithm	Analysis	Document(s)			[SP800-107r1]

			Algorithm	Name																			"S384"			Algorithm	Name																			"S384"
			Algorithm	Description												The	SHA384	hash	algorithm.			Algorithm	Description												The	SHA384	hash	algorithm.
			Algorithm	Usage	Location(s)						"alg",	i.e.,	used	with	JWS.			Algorithm	Usage	Location(s)						"alg",	i.e.,	used	with	JWS.
			JOSE	Implementation	Requirements	Optional			JOSE	Implementation	Requirements	Optional
			Change	Controller																FIDO	Alliance			Change	Controller																FIDO	Alliance
			Specification	Documents										[FIPS-180-4]			Specification	Documents										[FIPS-180-4]
			Algorithm	Analysis	Document(s)			[SP800-107r1]			Algorithm	Analysis	Document(s)			[SP800-107r1]

			Algorithm	Name																			"S512"			Algorithm	Name																			"S512"
			Algorithm	Description												The	SHA512	hash	algorithm.			Algorithm	Description												The	SHA512	hash	algorithm.
			Algorithm	Usage	Location(s)						"alg",	i.e.,	used	with	JWS.			Algorithm	Usage	Location(s)						"alg",	i.e.,	used	with	JWS.
			JOSE	Implementation	Requirements	Optional+			JOSE	Implementation	Requirements	Optional+

51/72



/Users/jehodges/Documents/work/standards/W3C/webauthn/index-vgb-u2f-attestation-0d0fcea.txt,	Top	line:	3154

			Change	Controller																FIDO	Alliance			Change	Controller																FIDO	Alliance
			Specification	Documents										[FIPS-180-4]			Specification	Documents										[FIPS-180-4]
			Algorithm	Analysis	Document(s)			[SP800-107r1]			Algorithm	Analysis	Document(s)			[SP800-107r1]

			Algorithm	Name																			"SM3"			Algorithm	Name																			"SM3"
			Algorithm	Description												The	SM3	hash	algorithm.			Algorithm	Description												The	SM3	hash	algorithm.
			Algorithm	Usage	Location(s)						"alg",	i.e.,	used	with	JWS.			Algorithm	Usage	Location(s)						"alg",	i.e.,	used	with	JWS.
			JOSE	Implementation	Requirements	Optional			JOSE	Implementation	Requirements	Optional
			Change	Controller																FIDO	Alliance			Change	Controller																FIDO	Alliance
			Specification	Documents										[OSCCA-SM3]			Specification	Documents										[OSCCA-SM3]
			Algorithm	Analysis	Document(s)			N/A			Algorithm	Analysis	Document(s)			N/A

11.	Sample	scenarios11.	Sample	scenarios

			This	section	is	not	normative.			This	section	is	not	normative.

			In	this	section,	we	walk	through	some	events	in	the	lifecycle	of	a			In	this	section,	we	walk	through	some	events	in	the	lifecycle	of	a
			scoped	credential,	along	with	the	corresponding	sample	code	for	using			scoped	credential,	along	with	the	corresponding	sample	code	for	using
			this	API.	Note	that	this	is	an	example	flow,	and	does	not	limit	the			this	API.	Note	that	this	is	an	example	flow,	and	does	not	limit	the
			scope	of	how	the	API	can	be	used.			scope	of	how	the	API	can	be	used.

			As	was	the	case	in	earlier	sections,	this	flow	focuses	on	a	use	case			As	was	the	case	in	earlier	sections,	this	flow	focuses	on	a	use	case
			involving	an	external	first-factor	authenticator	with	its	own	display.			involving	an	external	first-factor	authenticator	with	its	own	display.
			One	example	of	such	an	authenticator	would	be	a	smart	phone.	Other			One	example	of	such	an	authenticator	would	be	a	smart	phone.	Other
			authenticator	types	are	also	supported	by	this	API,	subject	to			authenticator	types	are	also	supported	by	this	API,	subject	to
			implementation	by	the	platform.	For	instance,	this	flow	also	works			implementation	by	the	platform.	For	instance,	this	flow	also	works
			without	modification	for	the	case	of	an	authenticator	that	is	embedded			without	modification	for	the	case	of	an	authenticator	that	is	embedded
			in	the	client	platform.	The	flow	also	works	for	the	case	of	an			in	the	client	platform.	The	flow	also	works	for	the	case	of	an
			authenticator	without	its	own	display	(similar	to	a	smart	card)	subject			authenticator	without	its	own	display	(similar	to	a	smart	card)	subject
			to	specific	implementation	considerations.	Specifically,	the	client			to	specific	implementation	considerations.	Specifically,	the	client
			platform	needs	to	display	any	prompts	that	would	otherwise	be	shown	by			platform	needs	to	display	any	prompts	that	would	otherwise	be	shown	by
			the	authenticator,	and	the	authenticator	needs	to	allow	the	client			the	authenticator,	and	the	authenticator	needs	to	allow	the	client
			platform	to	enumerate	all	the	authenticator's	credentials	so	that	the			platform	to	enumerate	all	the	authenticator's	credentials	so	that	the
			client	can	have	information	to	show	appropriate	prompts.			client	can	have	information	to	show	appropriate	prompts.

		11.1.	Registration		11.1.	Registration

			This	is	the	first-time	flow,	in	which	a	new	credential	is	created	and			This	is	the	first-time	flow,	in	which	a	new	credential	is	created	and
			registered	with	the	server.			registered	with	the	server.
				1.	The	user	visits	example.com,	which	serves	up	a	script.	At	this				1.	The	user	visits	example.com,	which	serves	up	a	script.	At	this
							point,	the	user	must	already	be	logged	in	using	a	legacy	username							point,	the	user	must	already	be	logged	in	using	a	legacy	username
							and	password,	or	additional	authenticator,	or	other	means							and	password,	or	additional	authenticator,	or	other	means
							acceptable	to	the	Relying	Party.							acceptable	to	the	Relying	Party.
				2.	The	Relying	Party	script	runs	the	code	snippet	below.				2.	The	Relying	Party	script	runs	the	code	snippet	below.
				3.	The	client	platform	searches	for	and	locates	the	authenticator.				3.	The	client	platform	searches	for	and	locates	the	authenticator.
				4.	The	client	platform	connects	to	the	authenticator,	performing	any				4.	The	client	platform	connects	to	the	authenticator,	performing	any
							pairing	actions	if	necessary.							pairing	actions	if	necessary.
				5.	The	authenticator	shows	appropriate	UI	for	the	user	to	select	the				5.	The	authenticator	shows	appropriate	UI	for	the	user	to	select	the
							authenticator	on	which	the	new	credential	will	be	created,	and							authenticator	on	which	the	new	credential	will	be	created,	and
							obtains	a	biometric	or	other	authorization	gesture	from	the	user.							obtains	a	biometric	or	other	authorization	gesture	from	the	user.
				6.	The	authenticator	returns	a	response	to	the	client	platform,	which				6.	The	authenticator	returns	a	response	to	the	client	platform,	which
							in	turn	returns	a	response	to	the	Relying	Party	script.	If	the	user							in	turn	returns	a	response	to	the	Relying	Party	script.	If	the	user
							declined	to	select	an	authenticator	or	provide	authorization,	an							declined	to	select	an	authenticator	or	provide	authorization,	an
							appropriate	error	is	returned.							appropriate	error	is	returned.
				7.	If	a	new	credential	was	created,				7.	If	a	new	credential	was	created,
										+	The	Relying	Party	script	sends	the	newly	generated	credential										+	The	Relying	Party	script	sends	the	newly	generated	credential
												public	key	to	the	server,	along	with	additional	information												public	key	to	the	server,	along	with	additional	information
												such	as	attestation	regarding	the	provenance	and												such	as	attestation	regarding	the	provenance	and
												characteristics	of	the	authenticator.												characteristics	of	the	authenticator.
										+	The	server	stores	the	credential	public	key	in	its	database										+	The	server	stores	the	credential	public	key	in	its	database
												and	associates	it	with	the	user	as	well	as	with	the												and	associates	it	with	the	user	as	well	as	with	the
												characteristics	of	authentication	indicated	by	attestation,												characteristics	of	authentication	indicated	by	attestation,

/Users/jehodges/Documents/work/standards/W3C/webauthn/index-vgb-u2f-attestation-dc90eab.txt,	Top	line:	3145

			Change	Controller																FIDO	Alliance			Change	Controller																FIDO	Alliance
			Specification	Documents										[FIPS-180-4]			Specification	Documents										[FIPS-180-4]
			Algorithm	Analysis	Document(s)			[SP800-107r1]			Algorithm	Analysis	Document(s)			[SP800-107r1]

			Algorithm	Name																			"SM3"			Algorithm	Name																			"SM3"
			Algorithm	Description												The	SM3	hash	algorithm.			Algorithm	Description												The	SM3	hash	algorithm.
			Algorithm	Usage	Location(s)						"alg",	i.e.,	used	with	JWS.			Algorithm	Usage	Location(s)						"alg",	i.e.,	used	with	JWS.
			JOSE	Implementation	Requirements	Optional			JOSE	Implementation	Requirements	Optional
			Change	Controller																FIDO	Alliance			Change	Controller																FIDO	Alliance
			Specification	Documents										[OSCCA-SM3]			Specification	Documents										[OSCCA-SM3]
			Algorithm	Analysis	Document(s)			N/A			Algorithm	Analysis	Document(s)			N/A

11.	Sample	scenarios11.	Sample	scenarios

			This	section	is	not	normative.			This	section	is	not	normative.

			In	this	section,	we	walk	through	some	events	in	the	lifecycle	of	a			In	this	section,	we	walk	through	some	events	in	the	lifecycle	of	a
			scoped	credential,	along	with	the	corresponding	sample	code	for	using			scoped	credential,	along	with	the	corresponding	sample	code	for	using
			this	API.	Note	that	this	is	an	example	flow,	and	does	not	limit	the			this	API.	Note	that	this	is	an	example	flow,	and	does	not	limit	the
			scope	of	how	the	API	can	be	used.			scope	of	how	the	API	can	be	used.

			As	was	the	case	in	earlier	sections,	this	flow	focuses	on	a	use	case			As	was	the	case	in	earlier	sections,	this	flow	focuses	on	a	use	case
			involving	an	external	first-factor	authenticator	with	its	own	display.			involving	an	external	first-factor	authenticator	with	its	own	display.
			One	example	of	such	an	authenticator	would	be	a	smart	phone.	Other			One	example	of	such	an	authenticator	would	be	a	smart	phone.	Other
			authenticator	types	are	also	supported	by	this	API,	subject	to			authenticator	types	are	also	supported	by	this	API,	subject	to
			implementation	by	the	platform.	For	instance,	this	flow	also	works			implementation	by	the	platform.	For	instance,	this	flow	also	works
			without	modification	for	the	case	of	an	authenticator	that	is	embedded			without	modification	for	the	case	of	an	authenticator	that	is	embedded
			in	the	client	platform.	The	flow	also	works	for	the	case	of	an			in	the	client	platform.	The	flow	also	works	for	the	case	of	an
			authenticator	without	its	own	display	(similar	to	a	smart	card)	subject			authenticator	without	its	own	display	(similar	to	a	smart	card)	subject
			to	specific	implementation	considerations.	Specifically,	the	client			to	specific	implementation	considerations.	Specifically,	the	client
			platform	needs	to	display	any	prompts	that	would	otherwise	be	shown	by			platform	needs	to	display	any	prompts	that	would	otherwise	be	shown	by
			the	authenticator,	and	the	authenticator	needs	to	allow	the	client			the	authenticator,	and	the	authenticator	needs	to	allow	the	client
			platform	to	enumerate	all	the	authenticator's	credentials	so	that	the			platform	to	enumerate	all	the	authenticator's	credentials	so	that	the
			client	can	have	information	to	show	appropriate	prompts.			client	can	have	information	to	show	appropriate	prompts.

		11.1.	Registration		11.1.	Registration

			This	is	the	first-time	flow,	in	which	a	new	credential	is	created	and			This	is	the	first-time	flow,	in	which	a	new	credential	is	created	and
			registered	with	the	server.			registered	with	the	server.
				1.	The	user	visits	example.com,	which	serves	up	a	script.	At	this				1.	The	user	visits	example.com,	which	serves	up	a	script.	At	this
							point,	the	user	must	already	be	logged	in	using	a	legacy	username							point,	the	user	must	already	be	logged	in	using	a	legacy	username
							and	password,	or	additional	authenticator,	or	other	means							and	password,	or	additional	authenticator,	or	other	means
							acceptable	to	the	Relying	Party.							acceptable	to	the	Relying	Party.
				2.	The	Relying	Party	script	runs	the	code	snippet	below.				2.	The	Relying	Party	script	runs	the	code	snippet	below.
				3.	The	client	platform	searches	for	and	locates	the	authenticator.				3.	The	client	platform	searches	for	and	locates	the	authenticator.
				4.	The	client	platform	connects	to	the	authenticator,	performing	any				4.	The	client	platform	connects	to	the	authenticator,	performing	any
							pairing	actions	if	necessary.							pairing	actions	if	necessary.
				5.	The	authenticator	shows	appropriate	UI	for	the	user	to	select	the				5.	The	authenticator	shows	appropriate	UI	for	the	user	to	select	the
							authenticator	on	which	the	new	credential	will	be	created,	and							authenticator	on	which	the	new	credential	will	be	created,	and
							obtains	a	biometric	or	other	authorization	gesture	from	the	user.							obtains	a	biometric	or	other	authorization	gesture	from	the	user.
				6.	The	authenticator	returns	a	response	to	the	client	platform,	which				6.	The	authenticator	returns	a	response	to	the	client	platform,	which
							in	turn	returns	a	response	to	the	Relying	Party	script.	If	the	user							in	turn	returns	a	response	to	the	Relying	Party	script.	If	the	user
							declined	to	select	an	authenticator	or	provide	authorization,	an							declined	to	select	an	authenticator	or	provide	authorization,	an
							appropriate	error	is	returned.							appropriate	error	is	returned.
				7.	If	a	new	credential	was	created,				7.	If	a	new	credential	was	created,
										+	The	Relying	Party	script	sends	the	newly	generated	credential										+	The	Relying	Party	script	sends	the	newly	generated	credential
												public	key	to	the	server,	along	with	additional	information												public	key	to	the	server,	along	with	additional	information
												such	as	attestation	regarding	the	provenance	and												such	as	attestation	regarding	the	provenance	and
												characteristics	of	the	authenticator.												characteristics	of	the	authenticator.
										+	The	server	stores	the	credential	public	key	in	its	database										+	The	server	stores	the	credential	public	key	in	its	database
												and	associates	it	with	the	user	as	well	as	with	the												and	associates	it	with	the	user	as	well	as	with	the
												characteristics	of	authentication	indicated	by	attestation,												characteristics	of	authentication	indicated	by	attestation,

52/72



/Users/jehodges/Documents/work/standards/W3C/webauthn/index-vgb-u2f-attestation-0d0fcea.txt,	Top	line:	3216

												also	storing	a	friendly	name	for	later	use.												also	storing	a	friendly	name	for	later	use.
										+	The	script	may	store	data	such	as	the	credential	ID	in	local										+	The	script	may	store	data	such	as	the	credential	ID	in	local
												storage,	to	improve	future	UX	by	narrowing	the	choice	of												storage,	to	improve	future	UX	by	narrowing	the	choice	of
												credential	for	the	user.												credential	for	the	user.

			The	sample	code	for	generating	and	registering	a	new	key	follows:			The	sample	code	for	generating	and	registering	a	new	key	follows:
var	webauthnAPI	=	navigator.authentication;var	webauthnAPI	=	navigator.authentication;

if	(!webauthnAPI)	{	/*	Platform	not	capable.	Handle	error.	*/	}if	(!webauthnAPI)	{	/*	Platform	not	capable.	Handle	error.	*/	}

var	userAccountInformation	=	{var	userAccountInformation	=	{
				rpDisplayName:	"Acme",				rpDisplayName:	"Acme",
				displayName:	"John	P.	Smith",				displayName:	"John	P.	Smith",
				name:	"johnpsmith@example.com",				name:	"johnpsmith@example.com",
				id:	"1098237235409872",				id:	"1098237235409872",
				imageURL:	"https://pics.acme.com/00/p/aBjjjpqPb.png"				imageURL:	"https://pics.acme.com/00/p/aBjjjpqPb.png"
};};

//	This	Relying	Party	will	accept	either	an	ES256	or	RS256	credential,	but//	This	Relying	Party	will	accept	either	an	ES256	or	RS256	credential,	but
//	prefers	an	ES256	credential.//	prefers	an	ES256	credential.
var	cryptoParams	=	[var	cryptoParams	=	[
				{				{
								type:	"ScopedCred",								type:	"ScopedCred",
								algorithm:	"ES256"								algorithm:	"ES256"
				},				},
				{				{
								type:	"ScopedCred",								type:	"ScopedCred",
								algorithm:	"RS256"								algorithm:	"RS256"
				}				}
];];
var	challenge	=	"Y2xpbWIgYSBtb3VudGFpbg";var	challenge	=	"Y2xpbWIgYSBtb3VudGFpbg";
var	options	=	{	timeoutSeconds:	300,		//	5	minutesvar	options	=	{	timeoutSeconds:	300,		//	5	minutes
																excludeList:	[],						//	No	excludeList																excludeList:	[],						//	No	excludeList
																extensions:	{"webauthn.location":	true}		//	Include	location	inf																extensions:	{"webauthn.location":	true}		//	Include	location	inf
ormationormation
																																															//	in	attestation																																															//	in	attestation
};};

//	Note:	The	following	call	will	cause	the	authenticator	to	display	UI.//	Note:	The	following	call	will	cause	the	authenticator	to	display	UI.
webauthnAPI.makeCredential(userAccountInformation,	cryptoParams,	challenge,	optiwebauthnAPI.makeCredential(userAccountInformation,	cryptoParams,	challenge,	opti
ons)ons)
				.then(function	(newCredentialInfo)	{				.then(function	(newCredentialInfo)	{
				//	Send	new	credential	info	to	server	for	verification	and	registration.				//	Send	new	credential	info	to	server	for	verification	and	registration.
}).catch(function	(err)	{}).catch(function	(err)	{
				//	No	acceptable	authenticator	or	user	refused	consent.	Handle	appropriately				//	No	acceptable	authenticator	or	user	refused	consent.	Handle	appropriately
..
});});

		11.2.	Authentication		11.2.	Authentication

			This	is	the	flow	when	a	user	with	an	already	registered	credential			This	is	the	flow	when	a	user	with	an	already	registered	credential
			visits	a	website	and	wants	to	authenticate	using	the	credential.			visits	a	website	and	wants	to	authenticate	using	the	credential.
				1.	The	user	visits	example.com,	which	serves	up	a	script.				1.	The	user	visits	example.com,	which	serves	up	a	script.
				2.	The	script	asks	the	client	platform	for	an	Authentication				2.	The	script	asks	the	client	platform	for	an	Authentication
							Assertion,	providing	as	much	information	as	possible	to	narrow	the							Assertion,	providing	as	much	information	as	possible	to	narrow	the
							choice	of	acceptable	credentials	for	the	user.	This	may	be	obtained							choice	of	acceptable	credentials	for	the	user.	This	may	be	obtained
							from	the	data	that	was	stored	locally	after	registration,	or	by							from	the	data	that	was	stored	locally	after	registration,	or	by
							other	means	such	as	prompting	the	user	for	a	username.							other	means	such	as	prompting	the	user	for	a	username.
				3.	The	Relying	Party	script	runs	one	of	the	code	snippets	below.				3.	The	Relying	Party	script	runs	one	of	the	code	snippets	below.
				4.	The	client	platform	searches	for	and	locates	the	authenticator.				4.	The	client	platform	searches	for	and	locates	the	authenticator.
				5.	The	client	platform	connects	to	the	authenticator,	performing	any				5.	The	client	platform	connects	to	the	authenticator,	performing	any
							pairing	actions	if	necessary.							pairing	actions	if	necessary.

/Users/jehodges/Documents/work/standards/W3C/webauthn/index-vgb-u2f-attestation-dc90eab.txt,	Top	line:	3207

												also	storing	a	friendly	name	for	later	use.												also	storing	a	friendly	name	for	later	use.
										+	The	script	may	store	data	such	as	the	credential	ID	in	local										+	The	script	may	store	data	such	as	the	credential	ID	in	local
												storage,	to	improve	future	UX	by	narrowing	the	choice	of												storage,	to	improve	future	UX	by	narrowing	the	choice	of
												credential	for	the	user.												credential	for	the	user.

			The	sample	code	for	generating	and	registering	a	new	key	follows:			The	sample	code	for	generating	and	registering	a	new	key	follows:
var	webauthnAPI	=	navigator.authentication;var	webauthnAPI	=	navigator.authentication;

if	(!webauthnAPI)	{	/*	Platform	not	capable.	Handle	error.	*/	}if	(!webauthnAPI)	{	/*	Platform	not	capable.	Handle	error.	*/	}

var	userAccountInformation	=	{var	userAccountInformation	=	{
				rpDisplayName:	"Acme",				rpDisplayName:	"Acme",
				displayName:	"John	P.	Smith",				displayName:	"John	P.	Smith",
				name:	"johnpsmith@example.com",				name:	"johnpsmith@example.com",
				id:	"1098237235409872",				id:	"1098237235409872",
				imageURL:	"https://pics.acme.com/00/p/aBjjjpqPb.png"				imageURL:	"https://pics.acme.com/00/p/aBjjjpqPb.png"
};};

//	This	Relying	Party	will	accept	either	an	ES256	or	RS256	credential,	but//	This	Relying	Party	will	accept	either	an	ES256	or	RS256	credential,	but
//	prefers	an	ES256	credential.//	prefers	an	ES256	credential.
var	cryptoParams	=	[var	cryptoParams	=	[
				{				{
								type:	"ScopedCred",								type:	"ScopedCred",
								algorithm:	"ES256"								algorithm:	"ES256"
				},				},
				{				{
								type:	"ScopedCred",								type:	"ScopedCred",
								algorithm:	"RS256"								algorithm:	"RS256"
				}				}
];];
var	challenge	=	"Y2xpbWIgYSBtb3VudGFpbg";var	challenge	=	"Y2xpbWIgYSBtb3VudGFpbg";
var	options	=	{	timeoutSeconds:	300,		//	5	minutesvar	options	=	{	timeoutSeconds:	300,		//	5	minutes
																excludeList:	[],						//	No	excludeList																excludeList:	[],						//	No	excludeList
																extensions:	{"webauthn.location":	true}		//	Include	location	inf																extensions:	{"webauthn.location":	true}		//	Include	location	inf
ormationormation
																																															//	in	attestation																																															//	in	attestation
};};

//	Note:	The	following	call	will	cause	the	authenticator	to	display	UI.//	Note:	The	following	call	will	cause	the	authenticator	to	display	UI.
webauthnAPI.makeCredential(userAccountInformation,	cryptoParams,	challenge,	optiwebauthnAPI.makeCredential(userAccountInformation,	cryptoParams,	challenge,	opti
ons)ons)
				.then(function	(newCredentialInfo)	{				.then(function	(newCredentialInfo)	{
				//	Send	new	credential	info	to	server	for	verification	and	registration.				//	Send	new	credential	info	to	server	for	verification	and	registration.
}).catch(function	(err)	{}).catch(function	(err)	{
				//	No	acceptable	authenticator	or	user	refused	consent.	Handle	appropriately				//	No	acceptable	authenticator	or	user	refused	consent.	Handle	appropriately
..
});});

		11.2.	Authentication		11.2.	Authentication

			This	is	the	flow	when	a	user	with	an	already	registered	credential			This	is	the	flow	when	a	user	with	an	already	registered	credential
			visits	a	website	and	wants	to	authenticate	using	the	credential.			visits	a	website	and	wants	to	authenticate	using	the	credential.
				1.	The	user	visits	example.com,	which	serves	up	a	script.				1.	The	user	visits	example.com,	which	serves	up	a	script.
				2.	The	script	asks	the	client	platform	for	an	Authentication				2.	The	script	asks	the	client	platform	for	an	Authentication
							Assertion,	providing	as	much	information	as	possible	to	narrow	the							Assertion,	providing	as	much	information	as	possible	to	narrow	the
							choice	of	acceptable	credentials	for	the	user.	This	may	be	obtained							choice	of	acceptable	credentials	for	the	user.	This	may	be	obtained
							from	the	data	that	was	stored	locally	after	registration,	or	by							from	the	data	that	was	stored	locally	after	registration,	or	by
							other	means	such	as	prompting	the	user	for	a	username.							other	means	such	as	prompting	the	user	for	a	username.
				3.	The	Relying	Party	script	runs	one	of	the	code	snippets	below.				3.	The	Relying	Party	script	runs	one	of	the	code	snippets	below.
				4.	The	client	platform	searches	for	and	locates	the	authenticator.				4.	The	client	platform	searches	for	and	locates	the	authenticator.
				5.	The	client	platform	connects	to	the	authenticator,	performing	any				5.	The	client	platform	connects	to	the	authenticator,	performing	any
							pairing	actions	if	necessary.							pairing	actions	if	necessary.

53/72



/Users/jehodges/Documents/work/standards/W3C/webauthn/index-vgb-u2f-attestation-0d0fcea.txt,	Top	line:	3278

				6.	The	authenticator	presents	the	user	with	a	notification	that	their				6.	The	authenticator	presents	the	user	with	a	notification	that	their
							attention	is	required.	On	opening	the	notification,	the	user	is							attention	is	required.	On	opening	the	notification,	the	user	is
							shown	a	friendly	selection	menu	of	acceptable	credentials	using	the							shown	a	friendly	selection	menu	of	acceptable	credentials	using	the
							account	information	provided	when	creating	the	credentials,	along							account	information	provided	when	creating	the	credentials,	along
							with	some	information	on	the	origin	that	is	requesting	these	keys.							with	some	information	on	the	origin	that	is	requesting	these	keys.
				7.	The	authenticator	obtains	a	biometric	or	other	authorization				7.	The	authenticator	obtains	a	biometric	or	other	authorization
							gesture	from	the	user.							gesture	from	the	user.
				8.	The	authenticator	returns	a	response	to	the	client	platform,	which				8.	The	authenticator	returns	a	response	to	the	client	platform,	which
							in	turn	returns	a	response	to	the	Relying	Party	script.	If	the	user							in	turn	returns	a	response	to	the	Relying	Party	script.	If	the	user
							declined	to	select	a	credential	or	provide	an	authorization,	an							declined	to	select	a	credential	or	provide	an	authorization,	an
							appropriate	error	is	returned.							appropriate	error	is	returned.
				9.	If	an	assertion	was	successfully	generated	and	returned,				9.	If	an	assertion	was	successfully	generated	and	returned,
										+	The	script	sends	the	assertion	to	the	server.										+	The	script	sends	the	assertion	to	the	server.
										+	The	server	examines	the	assertion,	extracts	the	credential	ID,										+	The	server	examines	the	assertion,	extracts	the	credential	ID,
												looks	up	the	registered	credential	public	key	it	is	database,												looks	up	the	registered	credential	public	key	it	is	database,
												and	verifies	the	assertion's	authentication	signature.	If												and	verifies	the	assertion's	authentication	signature.	If
												valid,	it	looks	up	the	identity	associated	with	the												valid,	it	looks	up	the	identity	associated	with	the
												assertion's	credential	ID;	that	identity	is	now	authenticated.												assertion's	credential	ID;	that	identity	is	now	authenticated.
												If	the	credential	ID	is	not	recognized	by	the	server	(e.g.,	it												If	the	credential	ID	is	not	recognized	by	the	server	(e.g.,	it
												has	been	deregistered	due	to	inactivity)	then	the												has	been	deregistered	due	to	inactivity)	then	the
												authentication	has	failed;	each	Relying	Party	will	handle	this												authentication	has	failed;	each	Relying	Party	will	handle	this
												in	its	own	way.												in	its	own	way.
										+	The	server	now	does	whatever	it	would	otherwise	do	upon										+	The	server	now	does	whatever	it	would	otherwise	do	upon
												successful	authentication	--	return	a	success	page,	set												successful	authentication	--	return	a	success	page,	set
												authentication	cookies,	etc.												authentication	cookies,	etc.

			If	the	Relying	Party	script	does	not	have	any	hints	available	(e.g.,			If	the	Relying	Party	script	does	not	have	any	hints	available	(e.g.,
			from	locally	stored	data)	to	help	it	narrow	the	list	of	credentials,			from	locally	stored	data)	to	help	it	narrow	the	list	of	credentials,
			then	the	sample	code	for	performing	such	an	authentication	might	look			then	the	sample	code	for	performing	such	an	authentication	might	look
			like	this:			like	this:
var	webauthnAPI	=	navigator.authentication;var	webauthnAPI	=	navigator.authentication;

if	(!webauthnAPI)	{	/*	Platform	not	capable.	Handle	error.	*/	}if	(!webauthnAPI)	{	/*	Platform	not	capable.	Handle	error.	*/	}

var	challenge	=	"Y2xpbWIgYSBtb3VudGFpbg";var	challenge	=	"Y2xpbWIgYSBtb3VudGFpbg";
var	options	=	{var	options	=	{
																timeoutSeconds	=	300,		//	5	minutes																timeoutSeconds	=	300,		//	5	minutes
																allowList:	[{	type:	"ScopedCred"	}]																allowList:	[{	type:	"ScopedCred"	}]
														};														};

webauthnAPI.getAssertion(challenge,	options)webauthnAPI.getAssertion(challenge,	options)
				.then(function	(assertion)	{				.then(function	(assertion)	{
				//	Send	assertion	to	server	for	verification				//	Send	assertion	to	server	for	verification
}).catch(function	(err)	{}).catch(function	(err)	{
				//	No	acceptable	credential	or	user	refused	consent.	Handle	appropriately.				//	No	acceptable	credential	or	user	refused	consent.	Handle	appropriately.
});});

			On	the	other	hand,	if	the	Relying	Party	script	has	some	hints	to	help			On	the	other	hand,	if	the	Relying	Party	script	has	some	hints	to	help
			it	narrow	the	list	of	credentials,	then	the	sample	code	for	performing			it	narrow	the	list	of	credentials,	then	the	sample	code	for	performing
			such	an	authentication	might	look	like	the	following.	Note	that	this			such	an	authentication	might	look	like	the	following.	Note	that	this
			sample	also	demonstrates	how	to	use	the	extension	for	transaction			sample	also	demonstrates	how	to	use	the	extension	for	transaction
			authorization.			authorization.
var	webauthnAPI	=	navigator.authentication;var	webauthnAPI	=	navigator.authentication;

if	(!webauthnAPI)	{	/*	Platform	not	capable.	Handle	error.	*/	}if	(!webauthnAPI)	{	/*	Platform	not	capable.	Handle	error.	*/	}

var	challenge	=	"Y2xpbWIgYSBtb3VudGFpbg";var	challenge	=	"Y2xpbWIgYSBtb3VudGFpbg";
var	acceptableCredential1	=	{var	acceptableCredential1	=	{
				type:	"ScopedCred",				type:	"ScopedCred",
				id:	"ISEhISEhIWhpIHRoZXJlISEhISEhIQo="				id:	"ISEhISEhIWhpIHRoZXJlISEhISEhIQo="
};};
var	acceptableCredential2	=	{var	acceptableCredential2	=	{

/Users/jehodges/Documents/work/standards/W3C/webauthn/index-vgb-u2f-attestation-dc90eab.txt,	Top	line:	3269

				6.	The	authenticator	presents	the	user	with	a	notification	that	their				6.	The	authenticator	presents	the	user	with	a	notification	that	their
							attention	is	required.	On	opening	the	notification,	the	user	is							attention	is	required.	On	opening	the	notification,	the	user	is
							shown	a	friendly	selection	menu	of	acceptable	credentials	using	the							shown	a	friendly	selection	menu	of	acceptable	credentials	using	the
							account	information	provided	when	creating	the	credentials,	along							account	information	provided	when	creating	the	credentials,	along
							with	some	information	on	the	origin	that	is	requesting	these	keys.							with	some	information	on	the	origin	that	is	requesting	these	keys.
				7.	The	authenticator	obtains	a	biometric	or	other	authorization				7.	The	authenticator	obtains	a	biometric	or	other	authorization
							gesture	from	the	user.							gesture	from	the	user.
				8.	The	authenticator	returns	a	response	to	the	client	platform,	which				8.	The	authenticator	returns	a	response	to	the	client	platform,	which
							in	turn	returns	a	response	to	the	Relying	Party	script.	If	the	user							in	turn	returns	a	response	to	the	Relying	Party	script.	If	the	user
							declined	to	select	a	credential	or	provide	an	authorization,	an							declined	to	select	a	credential	or	provide	an	authorization,	an
							appropriate	error	is	returned.							appropriate	error	is	returned.
				9.	If	an	assertion	was	successfully	generated	and	returned,				9.	If	an	assertion	was	successfully	generated	and	returned,
										+	The	script	sends	the	assertion	to	the	server.										+	The	script	sends	the	assertion	to	the	server.
										+	The	server	examines	the	assertion,	extracts	the	credential	ID,										+	The	server	examines	the	assertion,	extracts	the	credential	ID,
												looks	up	the	registered	credential	public	key	it	is	database,												looks	up	the	registered	credential	public	key	it	is	database,
												and	verifies	the	assertion's	authentication	signature.	If												and	verifies	the	assertion's	authentication	signature.	If
												valid,	it	looks	up	the	identity	associated	with	the												valid,	it	looks	up	the	identity	associated	with	the
												assertion's	credential	ID;	that	identity	is	now	authenticated.												assertion's	credential	ID;	that	identity	is	now	authenticated.
												If	the	credential	ID	is	not	recognized	by	the	server	(e.g.,	it												If	the	credential	ID	is	not	recognized	by	the	server	(e.g.,	it
												has	been	deregistered	due	to	inactivity)	then	the												has	been	deregistered	due	to	inactivity)	then	the
												authentication	has	failed;	each	Relying	Party	will	handle	this												authentication	has	failed;	each	Relying	Party	will	handle	this
												in	its	own	way.												in	its	own	way.
										+	The	server	now	does	whatever	it	would	otherwise	do	upon										+	The	server	now	does	whatever	it	would	otherwise	do	upon
												successful	authentication	--	return	a	success	page,	set												successful	authentication	--	return	a	success	page,	set
												authentication	cookies,	etc.												authentication	cookies,	etc.

			If	the	Relying	Party	script	does	not	have	any	hints	available	(e.g.,			If	the	Relying	Party	script	does	not	have	any	hints	available	(e.g.,
			from	locally	stored	data)	to	help	it	narrow	the	list	of	credentials,			from	locally	stored	data)	to	help	it	narrow	the	list	of	credentials,
			then	the	sample	code	for	performing	such	an	authentication	might	look			then	the	sample	code	for	performing	such	an	authentication	might	look
			like	this:			like	this:
var	webauthnAPI	=	navigator.authentication;var	webauthnAPI	=	navigator.authentication;

if	(!webauthnAPI)	{	/*	Platform	not	capable.	Handle	error.	*/	}if	(!webauthnAPI)	{	/*	Platform	not	capable.	Handle	error.	*/	}

var	challenge	=	"Y2xpbWIgYSBtb3VudGFpbg";var	challenge	=	"Y2xpbWIgYSBtb3VudGFpbg";
var	options	=	{var	options	=	{
																timeoutSeconds	=	300,		//	5	minutes																timeoutSeconds	=	300,		//	5	minutes
																allowList:	[{	type:	"ScopedCred"	}]																allowList:	[{	type:	"ScopedCred"	}]
														};														};

webauthnAPI.getAssertion(challenge,	options)webauthnAPI.getAssertion(challenge,	options)
				.then(function	(assertion)	{				.then(function	(assertion)	{
				//	Send	assertion	to	server	for	verification				//	Send	assertion	to	server	for	verification
}).catch(function	(err)	{}).catch(function	(err)	{
				//	No	acceptable	credential	or	user	refused	consent.	Handle	appropriately.				//	No	acceptable	credential	or	user	refused	consent.	Handle	appropriately.
});});

			On	the	other	hand,	if	the	Relying	Party	script	has	some	hints	to	help			On	the	other	hand,	if	the	Relying	Party	script	has	some	hints	to	help
			it	narrow	the	list	of	credentials,	then	the	sample	code	for	performing			it	narrow	the	list	of	credentials,	then	the	sample	code	for	performing
			such	an	authentication	might	look	like	the	following.	Note	that	this			such	an	authentication	might	look	like	the	following.	Note	that	this
			sample	also	demonstrates	how	to	use	the	extension	for	transaction			sample	also	demonstrates	how	to	use	the	extension	for	transaction
			authorization.			authorization.
var	webauthnAPI	=	navigator.authentication;var	webauthnAPI	=	navigator.authentication;

if	(!webauthnAPI)	{	/*	Platform	not	capable.	Handle	error.	*/	}if	(!webauthnAPI)	{	/*	Platform	not	capable.	Handle	error.	*/	}

var	challenge	=	"Y2xpbWIgYSBtb3VudGFpbg";var	challenge	=	"Y2xpbWIgYSBtb3VudGFpbg";
var	acceptableCredential1	=	{var	acceptableCredential1	=	{
				type:	"ScopedCred",				type:	"ScopedCred",
				id:	"ISEhISEhIWhpIHRoZXJlISEhISEhIQo="				id:	"ISEhISEhIWhpIHRoZXJlISEhISEhIQo="
};};
var	acceptableCredential2	=	{var	acceptableCredential2	=	{

54/72



/Users/jehodges/Documents/work/standards/W3C/webauthn/index-vgb-u2f-attestation-0d0fcea.txt,	Top	line:	3340

				type:	"ScopedCred",				type:	"ScopedCred",
				id:	"cm9zZXMgYXJlIHJlZCwgdmlvbGV0cyBhcmUgYmx1ZQo="				id:	"cm9zZXMgYXJlIHJlZCwgdmlvbGV0cyBhcmUgYmx1ZQo="
};};

var	options	=	{var	options	=	{
																timeoutSeconds:	300,		//	5	minutes																timeoutSeconds:	300,		//	5	minutes
																allowList:	[acceptableCredential1,	acceptableCredential2];																allowList:	[acceptableCredential1,	acceptableCredential2];
																extensions:	{	'webauthn.txauth.simple':																extensions:	{	'webauthn.txauth.simple':
																			"Wave	your	hands	in	the	air	like	you	just	don't	care"	};																			"Wave	your	hands	in	the	air	like	you	just	don't	care"	};
														};														};

webauthnAPI.getAssertion(challenge,	options)webauthnAPI.getAssertion(challenge,	options)
				.then(function	(assertion)	{				.then(function	(assertion)	{
				//	Send	assertion	to	server	for	verification				//	Send	assertion	to	server	for	verification
}).catch(function	(err)	{}).catch(function	(err)	{
				//	No	acceptable	credential	or	user	refused	consent.	Handle	appropriately.				//	No	acceptable	credential	or	user	refused	consent.	Handle	appropriately.
});});

		11.3.	Decommissioning		11.3.	Decommissioning

			The	following	are	possible	situations	in	which	decommissioning	a			The	following	are	possible	situations	in	which	decommissioning	a
			credential	might	be	desired.	Note	that	all	of	these	are	handled	on	the			credential	might	be	desired.	Note	that	all	of	these	are	handled	on	the
			server	side	and	do	not	need	support	from	the	API	specified	here.			server	side	and	do	not	need	support	from	the	API	specified	here.
					*	Possibility	#1	--	user	reports	the	credential	as	lost.					*	Possibility	#1	--	user	reports	the	credential	as	lost.
										+	User	goes	to	server.example.net,	authenticates	and	follows	a										+	User	goes	to	server.example.net,	authenticates	and	follows	a
												link	to	report	a	lost/stolen	device.												link	to	report	a	lost/stolen	device.
										+	Server	returns	a	page	showing	the	list	of	registered										+	Server	returns	a	page	showing	the	list	of	registered
												credentials	with	friendly	names	as	configured	during												credentials	with	friendly	names	as	configured	during
												registration.												registration.
										+	User	selects	a	credential	and	the	server	deletes	it	from	its										+	User	selects	a	credential	and	the	server	deletes	it	from	its
												database.												database.
										+	In	future,	the	Relying	Party	script	does	not	specify	this										+	In	future,	the	Relying	Party	script	does	not	specify	this
												credential	in	any	list	of	acceptable	credentials,	and												credential	in	any	list	of	acceptable	credentials,	and
												assertions	signed	by	this	credential	are	rejected.												assertions	signed	by	this	credential	are	rejected.
					*	Possibility	#2	--	server	deregisters	the	credential	due	to					*	Possibility	#2	--	server	deregisters	the	credential	due	to
							inactivity.							inactivity.
										+	Server	deletes	credential	from	its	database	during	maintenance										+	Server	deletes	credential	from	its	database	during	maintenance
												activity.												activity.
										+	In	the	future,	the	Relying	Party	script	does	not	specify	this										+	In	the	future,	the	Relying	Party	script	does	not	specify	this
												credential	in	any	list	of	acceptable	credentials,	and												credential	in	any	list	of	acceptable	credentials,	and
												assertions	signed	by	this	credential	are	rejected.												assertions	signed	by	this	credential	are	rejected.
					*	Possibility	#3	--	user	deletes	the	credential	from	the	device.					*	Possibility	#3	--	user	deletes	the	credential	from	the	device.
										+	User	employs	a	device-specific	method	(e.g.,	device	settings										+	User	employs	a	device-specific	method	(e.g.,	device	settings
												UI)	to	delete	a	credential	from	their	device.												UI)	to	delete	a	credential	from	their	device.
										+	From	this	point	on,	this	credential	will	not	appear	in	any										+	From	this	point	on,	this	credential	will	not	appear	in	any
												selection	prompts,	and	no	assertions	can	be	generated	with	it.												selection	prompts,	and	no	assertions	can	be	generated	with	it.
										+	Sometime	later,	the	server	deregisters	this	credential	due	to										+	Sometime	later,	the	server	deregisters	this	credential	due	to
												inactivity.												inactivity.

12.	Acknowledgements12.	Acknowledgements

			We	thank	the	following	for	their	contributions	to,	and	thorough	review			We	thank	the	following	for	their	contributions	to,	and	thorough	review
			of,	this	specification:	Domenic	Denicola,	Rahul	Ghosh,	Brad	Hill,	Jing			of,	this	specification:	Domenic	Denicola,	Rahul	Ghosh,	Brad	Hill,	Jing
			Jin,	Anne	van	Kesteren,	Giridhar	Mandyam,	Axel	Nennker,	Yaron	Sheffer,			Jin,	Anne	van	Kesteren,	Giridhar	Mandyam,	Axel	Nennker,	Yaron	Sheffer,
			Mike	West,	Boris	Zbarsky.			Mike	West,	Boris	Zbarsky.

IndexIndex

		Terms	defined	by	this	specification		Terms	defined	by	this	specification

					*	AAGUID,	in	9.3					*	AAGUID,	in	9.3
					*	Account,	in	4.3					*	Account,	in	4.3

/Users/jehodges/Documents/work/standards/W3C/webauthn/index-vgb-u2f-attestation-dc90eab.txt,	Top	line:	3331

				type:	"ScopedCred",				type:	"ScopedCred",
				id:	"cm9zZXMgYXJlIHJlZCwgdmlvbGV0cyBhcmUgYmx1ZQo="				id:	"cm9zZXMgYXJlIHJlZCwgdmlvbGV0cyBhcmUgYmx1ZQo="
};};

var	options	=	{var	options	=	{
																timeoutSeconds:	300,		//	5	minutes																timeoutSeconds:	300,		//	5	minutes
																allowList:	[acceptableCredential1,	acceptableCredential2];																allowList:	[acceptableCredential1,	acceptableCredential2];
																extensions:	{	'webauthn.txauth.simple':																extensions:	{	'webauthn.txauth.simple':
																			"Wave	your	hands	in	the	air	like	you	just	don't	care"	};																			"Wave	your	hands	in	the	air	like	you	just	don't	care"	};
														};														};

webauthnAPI.getAssertion(challenge,	options)webauthnAPI.getAssertion(challenge,	options)
				.then(function	(assertion)	{				.then(function	(assertion)	{
				//	Send	assertion	to	server	for	verification				//	Send	assertion	to	server	for	verification
}).catch(function	(err)	{}).catch(function	(err)	{
				//	No	acceptable	credential	or	user	refused	consent.	Handle	appropriately.				//	No	acceptable	credential	or	user	refused	consent.	Handle	appropriately.
});});

		11.3.	Decommissioning		11.3.	Decommissioning

			The	following	are	possible	situations	in	which	decommissioning	a			The	following	are	possible	situations	in	which	decommissioning	a
			credential	might	be	desired.	Note	that	all	of	these	are	handled	on	the			credential	might	be	desired.	Note	that	all	of	these	are	handled	on	the
			server	side	and	do	not	need	support	from	the	API	specified	here.			server	side	and	do	not	need	support	from	the	API	specified	here.
					*	Possibility	#1	--	user	reports	the	credential	as	lost.					*	Possibility	#1	--	user	reports	the	credential	as	lost.
										+	User	goes	to	server.example.net,	authenticates	and	follows	a										+	User	goes	to	server.example.net,	authenticates	and	follows	a
												link	to	report	a	lost/stolen	device.												link	to	report	a	lost/stolen	device.
										+	Server	returns	a	page	showing	the	list	of	registered										+	Server	returns	a	page	showing	the	list	of	registered
												credentials	with	friendly	names	as	configured	during												credentials	with	friendly	names	as	configured	during
												registration.												registration.
										+	User	selects	a	credential	and	the	server	deletes	it	from	its										+	User	selects	a	credential	and	the	server	deletes	it	from	its
												database.												database.
										+	In	future,	the	Relying	Party	script	does	not	specify	this										+	In	future,	the	Relying	Party	script	does	not	specify	this
												credential	in	any	list	of	acceptable	credentials,	and												credential	in	any	list	of	acceptable	credentials,	and
												assertions	signed	by	this	credential	are	rejected.												assertions	signed	by	this	credential	are	rejected.
					*	Possibility	#2	--	server	deregisters	the	credential	due	to					*	Possibility	#2	--	server	deregisters	the	credential	due	to
							inactivity.							inactivity.
										+	Server	deletes	credential	from	its	database	during	maintenance										+	Server	deletes	credential	from	its	database	during	maintenance
												activity.												activity.
										+	In	the	future,	the	Relying	Party	script	does	not	specify	this										+	In	the	future,	the	Relying	Party	script	does	not	specify	this
												credential	in	any	list	of	acceptable	credentials,	and												credential	in	any	list	of	acceptable	credentials,	and
												assertions	signed	by	this	credential	are	rejected.												assertions	signed	by	this	credential	are	rejected.
					*	Possibility	#3	--	user	deletes	the	credential	from	the	device.					*	Possibility	#3	--	user	deletes	the	credential	from	the	device.
										+	User	employs	a	device-specific	method	(e.g.,	device	settings										+	User	employs	a	device-specific	method	(e.g.,	device	settings
												UI)	to	delete	a	credential	from	their	device.												UI)	to	delete	a	credential	from	their	device.
										+	From	this	point	on,	this	credential	will	not	appear	in	any										+	From	this	point	on,	this	credential	will	not	appear	in	any
												selection	prompts,	and	no	assertions	can	be	generated	with	it.												selection	prompts,	and	no	assertions	can	be	generated	with	it.
										+	Sometime	later,	the	server	deregisters	this	credential	due	to										+	Sometime	later,	the	server	deregisters	this	credential	due	to
												inactivity.												inactivity.

12.	Acknowledgements12.	Acknowledgements

			We	thank	the	following	for	their	contributions	to,	and	thorough	review			We	thank	the	following	for	their	contributions	to,	and	thorough	review
			of,	this	specification:	Domenic	Denicola,	Rahul	Ghosh,	Brad	Hill,	Jing			of,	this	specification:	Domenic	Denicola,	Rahul	Ghosh,	Brad	Hill,	Jing
			Jin,	Anne	van	Kesteren,	Giridhar	Mandyam,	Axel	Nennker,	Yaron	Sheffer,			Jin,	Anne	van	Kesteren,	Giridhar	Mandyam,	Axel	Nennker,	Yaron	Sheffer,
			Mike	West,	Boris	Zbarsky.			Mike	West,	Boris	Zbarsky.

IndexIndex

		Terms	defined	by	this	specification		Terms	defined	by	this	specification

					*	AAGUID,	in	9.3					*	AAGUID,	in	9.3
					*	Account,	in	4.3					*	Account,	in	4.3

55/72



/Users/jehodges/Documents/work/standards/W3C/webauthn/index-vgb-u2f-attestation-0d0fcea.txt,	Top	line:	3402

					*	accountInformation,	in	4.1.1					*	accountInformation,	in	4.1.1
					*	algorithm					*	algorithm
										+	dict-member	for	ScopedCredentialParameters,	in	4.4										+	dict-member	for	ScopedCredentialParameters,	in	4.4
										+	dfn	for	ScopedCredentialParameters,	in	4.4										+	dfn	for	ScopedCredentialParameters,	in	4.4
					*	AlgorithmIdentifier,	in	2.1					*	AlgorithmIdentifier,	in	2.1
					*	allowList					*	allowList
										+	dict-member	for	AssertionOptions,	in	4.7										+	dict-member	for	AssertionOptions,	in	4.7
										+	dfn	for	AssertionOptions,	in	4.7										+	dfn	for	AssertionOptions,	in	4.7
					*	ASCII	case-insensitive	match,	in	3					*	ASCII	case-insensitive	match,	in	3
					*	Assertion,	in	3					*	Assertion,	in	3
					*	assertionChallenge,	in	4.1.2					*	assertionChallenge,	in	4.1.2
					*	AssertionOptions,	in	4.7					*	AssertionOptions,	in	4.7
					*	assertion	signature,	in	5.2.3					*	assertion	signature,	in	5.2.3
					*	Attachment,	in	4.5.1					*	Attachment,	in	4.5.1
					*	attachment					*	attachment
										+	dict-member	for	ScopedCredentialOptions,	in	4.5										+	dict-member	for	ScopedCredentialOptions,	in	4.5
										+	dfn	for	ScopedCredentialOptions,	in	4.5										+	dfn	for	ScopedCredentialOptions,	in	4.5
					*	Attestation,	in	3					*	Attestation,	in	3
					*	Attestation	Certificate,	in	3					*	Attestation	Certificate,	in	3
					*	attestationChallenge,	in	4.1.1					*	attestationChallenge,	in	4.1.1
					*	attestation	format	identifier,	in	7.1					*	attestation	format	identifier,	in	7.1
					*	Attestation	information,	in	3					*	Attestation	information,	in	3
					*	attestation	key	pair,	in	3					*	attestation	key	pair,	in	3
					*	attestationObject					*	attestationObject
										+	attribute	for	ScopedCredentialInfo,	in	4.2										+	attribute	for	ScopedCredentialInfo,	in	4.2
										+	dfn	for	ScopedCredentialInfo,	in	4.2										+	dfn	for	ScopedCredentialInfo,	in	4.2
					*	attestation	objects,	in	3					*	attestation	objects,	in	3
					*	attestation	private	key,	in	3					*	attestation	private	key,	in	3
					*	attestation	public	key,	in	3					*	attestation	public	key,	in	3
					*	attestation	signature,	in	5.2.3					*	attestation	signature,	in	5.2.3
					*	attestation	statement	format,	in	5.3					*	attestation	statement	format,	in	5.3
					*	attestation	type,	in	5.3					*	attestation	type,	in	5.3
					*	attToBeSigned,	in	5.3.3					*	attToBeSigned,	in	5.3.3
					*	Authentication,	in	3					*	Authentication,	in	3
					*	authentication,	in	4					*	authentication,	in	4
					*	Authentication	Assertion,	in	3					*	Authentication	Assertion,	in	3
					*	AuthenticationAssertion,	in	4.6					*	AuthenticationAssertion,	in	4.6
					*	AuthenticationExtensions,	in	4.8					*	AuthenticationExtensions,	in	4.8
					*	Authenticator,	in	3					*	Authenticator,	in	3
					*	authenticator	argument,	in	8.3					*	authenticator	argument,	in	8.3
					*	authenticatorCancel,	in	5.1.3					*	authenticatorCancel,	in	5.1.3
					*	authenticatorData					*	authenticatorData
										+	attribute	for	AuthenticationAssertion,	in	4.6										+	attribute	for	AuthenticationAssertion,	in	4.6
										+	definition	of,	in	5.2.1										+	definition	of,	in	5.2.1
					*	authenticatorGetAssertion,	in	5.1.2					*	authenticatorGetAssertion,	in	5.1.2
					*	authenticatorMakeCredential,	in	5.1.1					*	authenticatorMakeCredential,	in	5.1.1
					*	AuthenticatorSelectionList					*	AuthenticatorSelectionList
										+	(typedef),	in	9.3										+	(typedef),	in	9.3
										+	definition	of,	in	9.3										+	definition	of,	in	9.3
					*	Authorization	Gesture,	in	3					*	Authorization	Gesture,	in	3
					*	Base64url	Encoding,	in	2.1					*	Base64url	Encoding,	in	2.1
					*	Basic	Attestation,	in	5.3.2					*	Basic	Attestation,	in	5.3.2
					*	"ble",	in	4.9.5					*	"ble",	in	4.9.5
					*	ble					*	ble
										+	enum-value	for	Transport,	in	4.9.5										+	enum-value	for	Transport,	in	4.9.5
										+	dfn	for	Transport,	in	4.9.5										+	dfn	for	Transport,	in	4.9.5
					*	Ceremony,	in	3					*	Ceremony,	in	3
					*	challenge					*	challenge
										+	dict-member	for	ClientData,	in	4.9.1										+	dict-member	for	ClientData,	in	4.9.1
										+	dfn	for	ClientData,	in	4.9.1										+	dfn	for	ClientData,	in	4.9.1
					*	Client,	in	3					*	Client,	in	3
					*	client	argument,	in	8.3					*	client	argument,	in	8.3

/Users/jehodges/Documents/work/standards/W3C/webauthn/index-vgb-u2f-attestation-dc90eab.txt,	Top	line:	3393

					*	accountInformation,	in	4.1.1					*	accountInformation,	in	4.1.1
					*	algorithm					*	algorithm
										+	dict-member	for	ScopedCredentialParameters,	in	4.4										+	dict-member	for	ScopedCredentialParameters,	in	4.4
										+	dfn	for	ScopedCredentialParameters,	in	4.4										+	dfn	for	ScopedCredentialParameters,	in	4.4
					*	AlgorithmIdentifier,	in	2.1					*	AlgorithmIdentifier,	in	2.1
					*	allowList					*	allowList
										+	dict-member	for	AssertionOptions,	in	4.7										+	dict-member	for	AssertionOptions,	in	4.7
										+	dfn	for	AssertionOptions,	in	4.7										+	dfn	for	AssertionOptions,	in	4.7
					*	ASCII	case-insensitive	match,	in	3					*	ASCII	case-insensitive	match,	in	3
					*	Assertion,	in	3					*	Assertion,	in	3
					*	assertionChallenge,	in	4.1.2					*	assertionChallenge,	in	4.1.2
					*	AssertionOptions,	in	4.7					*	AssertionOptions,	in	4.7
					*	assertion	signature,	in	5.2.3					*	assertion	signature,	in	5.2.3
					*	Attachment,	in	4.5.1					*	Attachment,	in	4.5.1
					*	attachment					*	attachment
										+	dict-member	for	ScopedCredentialOptions,	in	4.5										+	dict-member	for	ScopedCredentialOptions,	in	4.5
										+	dfn	for	ScopedCredentialOptions,	in	4.5										+	dfn	for	ScopedCredentialOptions,	in	4.5
					*	Attestation,	in	3					*	Attestation,	in	3
					*	Attestation	Certificate,	in	3					*	Attestation	Certificate,	in	3
					*	attestationChallenge,	in	4.1.1					*	attestationChallenge,	in	4.1.1
					*	attestation	format	identifier,	in	7.1					*	attestation	format	identifier,	in	7.1
					*	Attestation	information,	in	3					*	Attestation	information,	in	3
					*	attestation	key	pair,	in	3					*	attestation	key	pair,	in	3
					*	attestationObject					*	attestationObject
										+	attribute	for	ScopedCredentialInfo,	in	4.2										+	attribute	for	ScopedCredentialInfo,	in	4.2
										+	dfn	for	ScopedCredentialInfo,	in	4.2										+	dfn	for	ScopedCredentialInfo,	in	4.2
					*	attestation	objects,	in	3					*	attestation	objects,	in	3
					*	attestation	private	key,	in	3					*	attestation	private	key,	in	3
					*	attestation	public	key,	in	3					*	attestation	public	key,	in	3
					*	attestation	signature,	in	5.2.3					*	attestation	signature,	in	5.2.3
					*	attestation	statement	format,	in	5.3					*	attestation	statement	format,	in	5.3
					*	attestation	type,	in	5.3					*	attestation	type,	in	5.3

					*	Authentication,	in	3					*	Authentication,	in	3
					*	authentication,	in	4					*	authentication,	in	4
					*	Authentication	Assertion,	in	3					*	Authentication	Assertion,	in	3
					*	AuthenticationAssertion,	in	4.6					*	AuthenticationAssertion,	in	4.6
					*	AuthenticationExtensions,	in	4.8					*	AuthenticationExtensions,	in	4.8
					*	Authenticator,	in	3					*	Authenticator,	in	3
					*	authenticator	argument,	in	8.3					*	authenticator	argument,	in	8.3
					*	authenticatorCancel,	in	5.1.3					*	authenticatorCancel,	in	5.1.3
					*	authenticatorData					*	authenticatorData
										+	attribute	for	AuthenticationAssertion,	in	4.6										+	attribute	for	AuthenticationAssertion,	in	4.6
										+	definition	of,	in	5.2.1										+	definition	of,	in	5.2.1
					*	authenticatorGetAssertion,	in	5.1.2					*	authenticatorGetAssertion,	in	5.1.2
					*	authenticatorMakeCredential,	in	5.1.1					*	authenticatorMakeCredential,	in	5.1.1
					*	AuthenticatorSelectionList					*	AuthenticatorSelectionList
										+	(typedef),	in	9.3										+	(typedef),	in	9.3
										+	definition	of,	in	9.3										+	definition	of,	in	9.3
					*	Authorization	Gesture,	in	3					*	Authorization	Gesture,	in	3
					*	Base64url	Encoding,	in	2.1					*	Base64url	Encoding,	in	2.1
					*	Basic	Attestation,	in	5.3.2					*	Basic	Attestation,	in	5.3.2
					*	"ble",	in	4.9.5					*	"ble",	in	4.9.5
					*	ble					*	ble
										+	enum-value	for	Transport,	in	4.9.5										+	enum-value	for	Transport,	in	4.9.5
										+	dfn	for	Transport,	in	4.9.5										+	dfn	for	Transport,	in	4.9.5
					*	Ceremony,	in	3					*	Ceremony,	in	3
					*	challenge					*	challenge
										+	dict-member	for	ClientData,	in	4.9.1										+	dict-member	for	ClientData,	in	4.9.1
										+	dfn	for	ClientData,	in	4.9.1										+	dfn	for	ClientData,	in	4.9.1
					*	Client,	in	3					*	Client,	in	3
					*	client	argument,	in	8.3					*	client	argument,	in	8.3

56/72



/Users/jehodges/Documents/work/standards/W3C/webauthn/index-vgb-u2f-attestation-0d0fcea.txt,	Top	line:	3464

					*	clientData					*	clientData
										+	attribute	for	ScopedCredentialInfo,	in	4.2										+	attribute	for	ScopedCredentialInfo,	in	4.2
										+	dfn	for	ScopedCredentialInfo,	in	4.2										+	dfn	for	ScopedCredentialInfo,	in	4.2
										+	attribute	for	AuthenticationAssertion,	in	4.6										+	attribute	for	AuthenticationAssertion,	in	4.6
										+	dfn	for	AuthenticationAssertion,	in	4.6										+	dfn	for	AuthenticationAssertion,	in	4.6
					*	ClientData,	in	4.9.1					*	ClientData,	in	4.9.1
					*	clientDataHash,	in	4.9.1					*	clientDataHash,	in	4.9.1
					*	clientDataJSON,	in	4.9.1					*	clientDataJSON,	in	4.9.1
					*	Conforming	User	Agent,	in	3					*	Conforming	User	Agent,	in	3
					*	content,	in	9.2					*	content,	in	9.2
					*	contentType,	in	9.2					*	contentType,	in	9.2
					*	credential					*	credential
										+	attribute	for	AuthenticationAssertion,	in	4.6										+	attribute	for	AuthenticationAssertion,	in	4.6
										+	dfn	for	AuthenticationAssertion,	in	4.6										+	dfn	for	AuthenticationAssertion,	in	4.6
					*	credential	key	pair,	in	3					*	credential	key	pair,	in	3
					*	credential	private	key,	in	3					*	credential	private	key,	in	3
					*	Credential	Public	Key,	in	3					*	Credential	Public	Key,	in	3
					*	cross-platform,	in	4.5.1					*	cross-platform,	in	4.5.1
					*	"cross-platform",	in	4.5.1					*	"cross-platform",	in	4.5.1
					*	cross-platform	attached,	in	4.5.1					*	cross-platform	attached,	in	4.5.1
					*	cross-platform	attachment,	in	4.5.1					*	cross-platform	attachment,	in	4.5.1
					*	cryptoParameters,	in	4.1.1					*	cryptoParameters,	in	4.1.1
					*	Direct	Anonymous	Attestation,	in	5.3.2					*	Direct	Anonymous	Attestation,	in	5.3.2
					*	displayName					*	displayName
										+	dict-member	for	Account,	in	4.3										+	dict-member	for	Account,	in	4.3
										+	dfn	for	Account,	in	4.3										+	dfn	for	Account,	in	4.3
					*	DOMException,	in	2.1					*	DOMException,	in	2.1
					*	excludeList					*	excludeList
										+	dict-member	for	ScopedCredentialOptions,	in	4.5										+	dict-member	for	ScopedCredentialOptions,	in	4.5
										+	dfn	for	ScopedCredentialOptions,	in	4.5										+	dfn	for	ScopedCredentialOptions,	in	4.5
					*	extension	identifier,	in	8.1					*	extension	identifier,	in	8.1
					*	extensions					*	extensions
										+	dict-member	for	ScopedCredentialOptions,	in	4.5										+	dict-member	for	ScopedCredentialOptions,	in	4.5
										+	dfn	for	ScopedCredentialOptions,	in	4.5										+	dfn	for	ScopedCredentialOptions,	in	4.5
										+	dict-member	for	AssertionOptions,	in	4.7										+	dict-member	for	AssertionOptions,	in	4.7
										+	dfn	for	AssertionOptions,	in	4.7										+	dfn	for	AssertionOptions,	in	4.7
										+	dict-member	for	ClientData,	in	4.9.1										+	dict-member	for	ClientData,	in	4.9.1
										+	dfn	for	ClientData,	in	4.9.1										+	dfn	for	ClientData,	in	4.9.1
					*	ExternalTransport,	in	4.9.5					*	ExternalTransport,	in	4.9.5
					*	getAssertion(assertionChallenge),	in	4.1.2					*	getAssertion(assertionChallenge),	in	4.1.2
					*	getAssertion(assertionChallenge,	options),	in	4.1.2					*	getAssertion(assertionChallenge,	options),	in	4.1.2
					*	hashAlg					*	hashAlg
										+	dict-member	for	ClientData,	in	4.9.1										+	dict-member	for	ClientData,	in	4.9.1
										+	dfn	for	ClientData,	in	4.9.1										+	dfn	for	ClientData,	in	4.9.1
					*	id					*	id
										+	dict-member	for	Account,	in	4.3										+	dict-member	for	Account,	in	4.3
										+	dfn	for	Account,	in	4.3										+	dfn	for	Account,	in	4.3
										+	attribute	for	ScopedCredential,	in	4.9.3										+	attribute	for	ScopedCredential,	in	4.9.3
										+	dfn	for	ScopedCredential,	in	4.9.3										+	dfn	for	ScopedCredential,	in	4.9.3
										+	dict-member	for	ScopedCredentialDescriptor,	in	4.9.4										+	dict-member	for	ScopedCredentialDescriptor,	in	4.9.4
										+	dfn	for	ScopedCredentialDescriptor,	in	4.9.4										+	dfn	for	ScopedCredentialDescriptor,	in	4.9.4
					*	imageURL					*	imageURL
										+	dict-member	for	Account,	in	4.3										+	dict-member	for	Account,	in	4.3
										+	dfn	for	Account,	in	4.3										+	dfn	for	Account,	in	4.3
					*	makeCredential(accountInformation,	cryptoParameters,					*	makeCredential(accountInformation,	cryptoParameters,
							attestationChallenge),	in	4.1.1							attestationChallenge),	in	4.1.1
					*	makeCredential(accountInformation,	cryptoParameters,					*	makeCredential(accountInformation,	cryptoParameters,
							attestationChallenge,	options),	in	4.1.1							attestationChallenge,	options),	in	4.1.1
					*	name					*	name
										+	dict-member	for	Account,	in	4.3										+	dict-member	for	Account,	in	4.3
										+	dfn	for	Account,	in	4.3										+	dfn	for	Account,	in	4.3
					*	nfc					*	nfc

/Users/jehodges/Documents/work/standards/W3C/webauthn/index-vgb-u2f-attestation-dc90eab.txt,	Top	line:	3454

					*	clientData					*	clientData
										+	attribute	for	ScopedCredentialInfo,	in	4.2										+	attribute	for	ScopedCredentialInfo,	in	4.2
										+	dfn	for	ScopedCredentialInfo,	in	4.2										+	dfn	for	ScopedCredentialInfo,	in	4.2
										+	attribute	for	AuthenticationAssertion,	in	4.6										+	attribute	for	AuthenticationAssertion,	in	4.6
										+	dfn	for	AuthenticationAssertion,	in	4.6										+	dfn	for	AuthenticationAssertion,	in	4.6
					*	ClientData,	in	4.9.1					*	ClientData,	in	4.9.1
					*	clientDataHash,	in	4.9.1					*	clientDataHash,	in	4.9.1
					*	clientDataJSON,	in	4.9.1					*	clientDataJSON,	in	4.9.1
					*	Conforming	User	Agent,	in	3					*	Conforming	User	Agent,	in	3
					*	content,	in	9.2					*	content,	in	9.2
					*	contentType,	in	9.2					*	contentType,	in	9.2
					*	credential					*	credential
										+	attribute	for	AuthenticationAssertion,	in	4.6										+	attribute	for	AuthenticationAssertion,	in	4.6
										+	dfn	for	AuthenticationAssertion,	in	4.6										+	dfn	for	AuthenticationAssertion,	in	4.6
					*	credential	key	pair,	in	3					*	credential	key	pair,	in	3
					*	credential	private	key,	in	3					*	credential	private	key,	in	3
					*	Credential	Public	Key,	in	3					*	Credential	Public	Key,	in	3
					*	cross-platform,	in	4.5.1					*	cross-platform,	in	4.5.1
					*	"cross-platform",	in	4.5.1					*	"cross-platform",	in	4.5.1
					*	cross-platform	attached,	in	4.5.1					*	cross-platform	attached,	in	4.5.1
					*	cross-platform	attachment,	in	4.5.1					*	cross-platform	attachment,	in	4.5.1
					*	cryptoParameters,	in	4.1.1					*	cryptoParameters,	in	4.1.1
					*	Direct	Anonymous	Attestation,	in	5.3.2					*	Direct	Anonymous	Attestation,	in	5.3.2
					*	displayName					*	displayName
										+	dict-member	for	Account,	in	4.3										+	dict-member	for	Account,	in	4.3
										+	dfn	for	Account,	in	4.3										+	dfn	for	Account,	in	4.3
					*	DOMException,	in	2.1					*	DOMException,	in	2.1
					*	excludeList					*	excludeList
										+	dict-member	for	ScopedCredentialOptions,	in	4.5										+	dict-member	for	ScopedCredentialOptions,	in	4.5
										+	dfn	for	ScopedCredentialOptions,	in	4.5										+	dfn	for	ScopedCredentialOptions,	in	4.5
					*	extension	identifier,	in	8.1					*	extension	identifier,	in	8.1
					*	extensions					*	extensions
										+	dict-member	for	ScopedCredentialOptions,	in	4.5										+	dict-member	for	ScopedCredentialOptions,	in	4.5
										+	dfn	for	ScopedCredentialOptions,	in	4.5										+	dfn	for	ScopedCredentialOptions,	in	4.5
										+	dict-member	for	AssertionOptions,	in	4.7										+	dict-member	for	AssertionOptions,	in	4.7
										+	dfn	for	AssertionOptions,	in	4.7										+	dfn	for	AssertionOptions,	in	4.7
										+	dict-member	for	ClientData,	in	4.9.1										+	dict-member	for	ClientData,	in	4.9.1
										+	dfn	for	ClientData,	in	4.9.1										+	dfn	for	ClientData,	in	4.9.1
					*	ExternalTransport,	in	4.9.5					*	ExternalTransport,	in	4.9.5
					*	getAssertion(assertionChallenge),	in	4.1.2					*	getAssertion(assertionChallenge),	in	4.1.2
					*	getAssertion(assertionChallenge,	options),	in	4.1.2					*	getAssertion(assertionChallenge,	options),	in	4.1.2
					*	hashAlg					*	hashAlg
										+	dict-member	for	ClientData,	in	4.9.1										+	dict-member	for	ClientData,	in	4.9.1
										+	dfn	for	ClientData,	in	4.9.1										+	dfn	for	ClientData,	in	4.9.1
					*	id					*	id
										+	dict-member	for	Account,	in	4.3										+	dict-member	for	Account,	in	4.3
										+	dfn	for	Account,	in	4.3										+	dfn	for	Account,	in	4.3
										+	attribute	for	ScopedCredential,	in	4.9.3										+	attribute	for	ScopedCredential,	in	4.9.3
										+	dfn	for	ScopedCredential,	in	4.9.3										+	dfn	for	ScopedCredential,	in	4.9.3
										+	dict-member	for	ScopedCredentialDescriptor,	in	4.9.4										+	dict-member	for	ScopedCredentialDescriptor,	in	4.9.4
										+	dfn	for	ScopedCredentialDescriptor,	in	4.9.4										+	dfn	for	ScopedCredentialDescriptor,	in	4.9.4
					*	imageURL					*	imageURL
										+	dict-member	for	Account,	in	4.3										+	dict-member	for	Account,	in	4.3
										+	dfn	for	Account,	in	4.3										+	dfn	for	Account,	in	4.3
					*	makeCredential(accountInformation,	cryptoParameters,					*	makeCredential(accountInformation,	cryptoParameters,
							attestationChallenge),	in	4.1.1							attestationChallenge),	in	4.1.1
					*	makeCredential(accountInformation,	cryptoParameters,					*	makeCredential(accountInformation,	cryptoParameters,
							attestationChallenge,	options),	in	4.1.1							attestationChallenge,	options),	in	4.1.1
					*	name					*	name
										+	dict-member	for	Account,	in	4.3										+	dict-member	for	Account,	in	4.3
										+	dfn	for	Account,	in	4.3										+	dfn	for	Account,	in	4.3
					*	nfc					*	nfc

57/72



/Users/jehodges/Documents/work/standards/W3C/webauthn/index-vgb-u2f-attestation-0d0fcea.txt,	Top	line:	3526

										+	enum-value	for	Transport,	in	4.9.5										+	enum-value	for	Transport,	in	4.9.5
										+	dfn	for	Transport,	in	4.9.5										+	dfn	for	Transport,	in	4.9.5
					*	"nfc",	in	4.9.5					*	"nfc",	in	4.9.5
					*	options					*	options
										+	dfn	for	makeCredential(),	in	4.1.1										+	dfn	for	makeCredential(),	in	4.1.1
										+	dfn	for	getAssertion(),	in	4.1.2										+	dfn	for	getAssertion(),	in	4.1.2
					*	origin					*	origin
										+	dict-member	for	ClientData,	in	4.9.1										+	dict-member	for	ClientData,	in	4.9.1
										+	dfn	for	ClientData,	in	4.9.1										+	dfn	for	ClientData,	in	4.9.1
					*	platform,	in	4.5.1					*	platform,	in	4.5.1
					*	"platform",	in	4.5.1					*	"platform",	in	4.5.1
					*	platform	attachment,	in	4.5.1					*	platform	attachment,	in	4.5.1
					*	platform	authenticators,	in	4.5.1					*	platform	authenticators,	in	4.5.1
					*	Privacy	CA,	in	5.3.2					*	Privacy	CA,	in	5.3.2
					*	Promises,	in	2.1					*	Promises,	in	2.1
					*	Registration,	in	3					*	Registration,	in	3
					*	Relying	Party,	in	3					*	Relying	Party,	in	3
					*	Relying	Party	Identifier,	in	3					*	Relying	Party	Identifier,	in	3
					*	roaming	authenticators,	in	4.5.1					*	roaming	authenticators,	in	4.5.1
					*	rpDisplayName					*	rpDisplayName
										+	dict-member	for	Account,	in	4.3										+	dict-member	for	Account,	in	4.3
										+	dfn	for	Account,	in	4.3										+	dfn	for	Account,	in	4.3
					*	rpId					*	rpId
										+	dict-member	for	ScopedCredentialOptions,	in	4.5										+	dict-member	for	ScopedCredentialOptions,	in	4.5
										+	dfn	for	ScopedCredentialOptions,	in	4.5										+	dfn	for	ScopedCredentialOptions,	in	4.5
										+	dict-member	for	AssertionOptions,	in	4.7										+	dict-member	for	AssertionOptions,	in	4.7
										+	dfn	for	AssertionOptions,	in	4.7										+	dfn	for	AssertionOptions,	in	4.7
					*	RP	ID,	in	3					*	RP	ID,	in	3
					*	ScopedCred					*	ScopedCred
										+	enum-value	for	ScopedCredentialType,	in	4.9.2										+	enum-value	for	ScopedCredentialType,	in	4.9.2
										+	dfn	for	ScopedCredentialType,	in	4.9.2										+	dfn	for	ScopedCredentialType,	in	4.9.2
					*	"ScopedCred",	in	4.9.2					*	"ScopedCred",	in	4.9.2
					*	Scoped	Credential,	in	3					*	Scoped	Credential,	in	3
					*	ScopedCredential,	in	4.9.3					*	ScopedCredential,	in	4.9.3
					*	ScopedCredentialDescriptor,	in	4.9.4					*	ScopedCredentialDescriptor,	in	4.9.4
					*	ScopedCredentialInfo,	in	4.2					*	ScopedCredentialInfo,	in	4.2
					*	ScopedCredentialOptions,	in	4.5					*	ScopedCredentialOptions,	in	4.5
					*	ScopedCredentialParameters,	in	4.4					*	ScopedCredentialParameters,	in	4.4
					*	ScopedCredentialType,	in	4.9.2					*	ScopedCredentialType,	in	4.9.2
					*	secure	contexts,	in	4					*	secure	contexts,	in	4
					*	Self	Attestation,	in	5.3.2					*	Self	Attestation,	in	5.3.2
					*	signature					*	signature
										+	attribute	for	AuthenticationAssertion,	in	4.6										+	attribute	for	AuthenticationAssertion,	in	4.6
										+	dfn	for	AuthenticationAssertion,	in	4.6										+	dfn	for	AuthenticationAssertion,	in	4.6
					*	timeoutSeconds					*	timeoutSeconds
										+	dict-member	for	ScopedCredentialOptions,	in	4.5										+	dict-member	for	ScopedCredentialOptions,	in	4.5
										+	dfn	for	ScopedCredentialOptions,	in	4.5										+	dfn	for	ScopedCredentialOptions,	in	4.5
										+	dict-member	for	AssertionOptions,	in	4.7										+	dict-member	for	AssertionOptions,	in	4.7
										+	dfn	for	AssertionOptions,	in	4.7										+	dfn	for	AssertionOptions,	in	4.7
					*	tokenBinding					*	tokenBinding
										+	dict-member	for	ClientData,	in	4.9.1										+	dict-member	for	ClientData,	in	4.9.1
										+	dfn	for	ClientData,	in	4.9.1										+	dfn	for	ClientData,	in	4.9.1
					*	Transport,	in	4.9.5					*	Transport,	in	4.9.5
					*	transports,	in	4.9.4					*	transports,	in	4.9.4
					*	type					*	type
										+	dict-member	for	ScopedCredentialParameters,	in	4.4										+	dict-member	for	ScopedCredentialParameters,	in	4.4
										+	dfn	for	ScopedCredentialParameters,	in	4.4										+	dfn	for	ScopedCredentialParameters,	in	4.4
										+	attribute	for	ScopedCredential,	in	4.9.3										+	attribute	for	ScopedCredential,	in	4.9.3
										+	dfn	for	ScopedCredential,	in	4.9.3										+	dfn	for	ScopedCredential,	in	4.9.3
										+	dict-member	for	ScopedCredentialDescriptor,	in	4.9.4										+	dict-member	for	ScopedCredentialDescriptor,	in	4.9.4
										+	dfn	for	ScopedCredentialDescriptor,	in	4.9.4										+	dfn	for	ScopedCredentialDescriptor,	in	4.9.4
					*	"usb",	in	4.9.5					*	"usb",	in	4.9.5

/Users/jehodges/Documents/work/standards/W3C/webauthn/index-vgb-u2f-attestation-dc90eab.txt,	Top	line:	3516

										+	enum-value	for	Transport,	in	4.9.5										+	enum-value	for	Transport,	in	4.9.5
										+	dfn	for	Transport,	in	4.9.5										+	dfn	for	Transport,	in	4.9.5
					*	"nfc",	in	4.9.5					*	"nfc",	in	4.9.5
					*	options					*	options
										+	dfn	for	makeCredential(),	in	4.1.1										+	dfn	for	makeCredential(),	in	4.1.1
										+	dfn	for	getAssertion(),	in	4.1.2										+	dfn	for	getAssertion(),	in	4.1.2
					*	origin					*	origin
										+	dict-member	for	ClientData,	in	4.9.1										+	dict-member	for	ClientData,	in	4.9.1
										+	dfn	for	ClientData,	in	4.9.1										+	dfn	for	ClientData,	in	4.9.1
					*	platform,	in	4.5.1					*	platform,	in	4.5.1
					*	"platform",	in	4.5.1					*	"platform",	in	4.5.1
					*	platform	attachment,	in	4.5.1					*	platform	attachment,	in	4.5.1
					*	platform	authenticators,	in	4.5.1					*	platform	authenticators,	in	4.5.1
					*	Privacy	CA,	in	5.3.2					*	Privacy	CA,	in	5.3.2
					*	Promises,	in	2.1					*	Promises,	in	2.1
					*	Registration,	in	3					*	Registration,	in	3
					*	Relying	Party,	in	3					*	Relying	Party,	in	3
					*	Relying	Party	Identifier,	in	3					*	Relying	Party	Identifier,	in	3
					*	roaming	authenticators,	in	4.5.1					*	roaming	authenticators,	in	4.5.1
					*	rpDisplayName					*	rpDisplayName
										+	dict-member	for	Account,	in	4.3										+	dict-member	for	Account,	in	4.3
										+	dfn	for	Account,	in	4.3										+	dfn	for	Account,	in	4.3
					*	rpId					*	rpId
										+	dict-member	for	ScopedCredentialOptions,	in	4.5										+	dict-member	for	ScopedCredentialOptions,	in	4.5
										+	dfn	for	ScopedCredentialOptions,	in	4.5										+	dfn	for	ScopedCredentialOptions,	in	4.5
										+	dict-member	for	AssertionOptions,	in	4.7										+	dict-member	for	AssertionOptions,	in	4.7
										+	dfn	for	AssertionOptions,	in	4.7										+	dfn	for	AssertionOptions,	in	4.7
					*	RP	ID,	in	3					*	RP	ID,	in	3
					*	ScopedCred					*	ScopedCred
										+	enum-value	for	ScopedCredentialType,	in	4.9.2										+	enum-value	for	ScopedCredentialType,	in	4.9.2
										+	dfn	for	ScopedCredentialType,	in	4.9.2										+	dfn	for	ScopedCredentialType,	in	4.9.2
					*	"ScopedCred",	in	4.9.2					*	"ScopedCred",	in	4.9.2
					*	Scoped	Credential,	in	3					*	Scoped	Credential,	in	3
					*	ScopedCredential,	in	4.9.3					*	ScopedCredential,	in	4.9.3
					*	ScopedCredentialDescriptor,	in	4.9.4					*	ScopedCredentialDescriptor,	in	4.9.4
					*	ScopedCredentialInfo,	in	4.2					*	ScopedCredentialInfo,	in	4.2
					*	ScopedCredentialOptions,	in	4.5					*	ScopedCredentialOptions,	in	4.5
					*	ScopedCredentialParameters,	in	4.4					*	ScopedCredentialParameters,	in	4.4
					*	ScopedCredentialType,	in	4.9.2					*	ScopedCredentialType,	in	4.9.2
					*	secure	contexts,	in	4					*	secure	contexts,	in	4
					*	Self	Attestation,	in	5.3.2					*	Self	Attestation,	in	5.3.2
					*	signature					*	signature
										+	attribute	for	AuthenticationAssertion,	in	4.6										+	attribute	for	AuthenticationAssertion,	in	4.6
										+	dfn	for	AuthenticationAssertion,	in	4.6										+	dfn	for	AuthenticationAssertion,	in	4.6
					*	timeoutSeconds					*	timeoutSeconds
										+	dict-member	for	ScopedCredentialOptions,	in	4.5										+	dict-member	for	ScopedCredentialOptions,	in	4.5
										+	dfn	for	ScopedCredentialOptions,	in	4.5										+	dfn	for	ScopedCredentialOptions,	in	4.5
										+	dict-member	for	AssertionOptions,	in	4.7										+	dict-member	for	AssertionOptions,	in	4.7
										+	dfn	for	AssertionOptions,	in	4.7										+	dfn	for	AssertionOptions,	in	4.7
					*	tokenBinding					*	tokenBinding
										+	dict-member	for	ClientData,	in	4.9.1										+	dict-member	for	ClientData,	in	4.9.1
										+	dfn	for	ClientData,	in	4.9.1										+	dfn	for	ClientData,	in	4.9.1
					*	Transport,	in	4.9.5					*	Transport,	in	4.9.5
					*	transports,	in	4.9.4					*	transports,	in	4.9.4
					*	type					*	type
										+	dict-member	for	ScopedCredentialParameters,	in	4.4										+	dict-member	for	ScopedCredentialParameters,	in	4.4
										+	dfn	for	ScopedCredentialParameters,	in	4.4										+	dfn	for	ScopedCredentialParameters,	in	4.4
										+	attribute	for	ScopedCredential,	in	4.9.3										+	attribute	for	ScopedCredential,	in	4.9.3
										+	dfn	for	ScopedCredential,	in	4.9.3										+	dfn	for	ScopedCredential,	in	4.9.3
										+	dict-member	for	ScopedCredentialDescriptor,	in	4.9.4										+	dict-member	for	ScopedCredentialDescriptor,	in	4.9.4
										+	dfn	for	ScopedCredentialDescriptor,	in	4.9.4										+	dfn	for	ScopedCredentialDescriptor,	in	4.9.4
					*	"usb",	in	4.9.5					*	"usb",	in	4.9.5

58/72



/Users/jehodges/Documents/work/standards/W3C/webauthn/index-vgb-u2f-attestation-0d0fcea.txt,	Top	line:	3588

					*	usb					*	usb
										+	enum-value	for	Transport,	in	4.9.5										+	enum-value	for	Transport,	in	4.9.5
										+	dfn	for	Transport,	in	4.9.5										+	dfn	for	Transport,	in	4.9.5
					*	User	Consent,	in	3					*	User	Consent,	in	3
					*	User	Verification,	in	3					*	User	Verification,	in	3
					*	WebAuthentication,	in	4.1					*	WebAuthentication,	in	4.1
					*	Web	Authentication	API,	in	4					*	Web	Authentication	API,	in	4
					*	WebAuthn	Client,	in	3					*	WebAuthn	Client,	in	3

		Terms	defined	by	reference		Terms	defined	by	reference

					*	[HTML]	defines	the	following	terms:					*	[HTML]	defines	the	following	terms:
										+	Navigator										+	Navigator
					*	[HTML51]	defines	the	following	terms:					*	[HTML51]	defines	the	following	terms:
										+	current	settings	object										+	current	settings	object
										+	navigator										+	navigator
										+	opaque	origin										+	opaque	origin
										+	origin										+	origin
										+	relaxing	the	same-origin	restriction										+	relaxing	the	same-origin	restriction
					*	[WebCryptoAPI]	defines	the	following	terms:					*	[WebCryptoAPI]	defines	the	following	terms:
										+	normalizing	an	algorithm										+	normalizing	an	algorithm
					*	[WebIDL]	defines	the	following	terms:					*	[WebIDL]	defines	the	following	terms:
										+	BufferSource										+	BufferSource
										+	SecureContext										+	SecureContext
										+	present										+	present

ReferencesReferences

		Normative	References		Normative	References

			[DOM4]			[DOM4]
										Anne	van	Kesteren.	DOM	Standard.	Living	Standard.	URL:										Anne	van	Kesteren.	DOM	Standard.	Living	Standard.	URL:
										https://dom.spec.whatwg.org/										https://dom.spec.whatwg.org/

			[FIDOEcdaaAlgorithm]			[FIDOEcdaaAlgorithm]
										R.	Lindemann;	A.	Edgington;	R.	Urian.	FIDO	ECDAA	Algorithm.	FIDO										R.	Lindemann;	A.	Edgington;	R.	Urian.	FIDO	ECDAA	Algorithm.	FIDO
										Alliance	Proposed	Standard	(To	Be	Published).										Alliance	Proposed	Standard	(To	Be	Published).

			[FIDOReg]			[FIDOReg]
										R.	Lindemann;	D.	Baghdasaryan;	B.	Hill.	FIDO	UAF	Registry	of										R.	Lindemann;	D.	Baghdasaryan;	B.	Hill.	FIDO	UAF	Registry	of
										Predefined	Values.	FIDO	Alliance	Proposed	Standard.	URL:										Predefined	Values.	FIDO	Alliance	Proposed	Standard.	URL:
										https://fidoalliance.org/specs/fido-uaf-v1.0-ps-20141208/fido-ua										https://fidoalliance.org/specs/fido-uaf-v1.0-ps-20141208/fido-ua
										f-reg-v1.0-ps-20141208.html										f-reg-v1.0-ps-20141208.html

			[FIPS-180-4]			[FIPS-180-4]
										FIPS	PUB	180-4	Secure	Hash	Standard.	URL:										FIPS	PUB	180-4	Secure	Hash	Standard.	URL:
										http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf										http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf

			[HTML]			[HTML]
										Anne	van	Kesteren;	et	al.	HTML	Standard.	Living	Standard.	URL:										Anne	van	Kesteren;	et	al.	HTML	Standard.	Living	Standard.	URL:
										https://html.spec.whatwg.org/multipage/										https://html.spec.whatwg.org/multipage/

			[HTML51]			[HTML51]
										Steve	Faulkner;	et	al.	HTML	5.1.	URL:										Steve	Faulkner;	et	al.	HTML	5.1.	URL:
										https://w3c.github.io/html/										https://w3c.github.io/html/

			[OSCCA-SM3]			[OSCCA-SM3]
										SM3	Cryptographic	Hash	Algorithm.	December	2010.	URL:										SM3	Cryptographic	Hash	Algorithm.	December	2010.	URL:
										http://www.oscca.gov.cn/UpFile/20101222141857786.pdf										http://www.oscca.gov.cn/UpFile/20101222141857786.pdf

			[RFC2119]			[RFC2119]
										S.	Bradner.	Key	words	for	use	in	RFCs	to	Indicate	Requirement										S.	Bradner.	Key	words	for	use	in	RFCs	to	Indicate	Requirement

/Users/jehodges/Documents/work/standards/W3C/webauthn/index-vgb-u2f-attestation-dc90eab.txt,	Top	line:	3578

					*	usb					*	usb
										+	enum-value	for	Transport,	in	4.9.5										+	enum-value	for	Transport,	in	4.9.5
										+	dfn	for	Transport,	in	4.9.5										+	dfn	for	Transport,	in	4.9.5
					*	User	Consent,	in	3					*	User	Consent,	in	3
					*	User	Verification,	in	3					*	User	Verification,	in	3
					*	WebAuthentication,	in	4.1					*	WebAuthentication,	in	4.1
					*	Web	Authentication	API,	in	4					*	Web	Authentication	API,	in	4
					*	WebAuthn	Client,	in	3					*	WebAuthn	Client,	in	3

		Terms	defined	by	reference		Terms	defined	by	reference

					*	[HTML]	defines	the	following	terms:					*	[HTML]	defines	the	following	terms:
										+	Navigator										+	Navigator
					*	[HTML51]	defines	the	following	terms:					*	[HTML51]	defines	the	following	terms:
										+	current	settings	object										+	current	settings	object
										+	navigator										+	navigator
										+	opaque	origin										+	opaque	origin
										+	origin										+	origin
										+	relaxing	the	same-origin	restriction										+	relaxing	the	same-origin	restriction
					*	[WebCryptoAPI]	defines	the	following	terms:					*	[WebCryptoAPI]	defines	the	following	terms:
										+	normalizing	an	algorithm										+	normalizing	an	algorithm
					*	[WebIDL]	defines	the	following	terms:					*	[WebIDL]	defines	the	following	terms:
										+	BufferSource										+	BufferSource
										+	SecureContext										+	SecureContext
										+	present										+	present

ReferencesReferences

		Normative	References		Normative	References

			[DOM4]			[DOM4]
										Anne	van	Kesteren.	DOM	Standard.	Living	Standard.	URL:										Anne	van	Kesteren.	DOM	Standard.	Living	Standard.	URL:
										https://dom.spec.whatwg.org/										https://dom.spec.whatwg.org/

			[FIDOEcdaaAlgorithm]			[FIDOEcdaaAlgorithm]
										R.	Lindemann;	A.	Edgington;	R.	Urian.	FIDO	ECDAA	Algorithm.	FIDO										R.	Lindemann;	A.	Edgington;	R.	Urian.	FIDO	ECDAA	Algorithm.	FIDO
										Alliance	Proposed	Standard	(To	Be	Published).										Alliance	Proposed	Standard	(To	Be	Published).

			[FIDOReg]			[FIDOReg]
										R.	Lindemann;	D.	Baghdasaryan;	B.	Hill.	FIDO	UAF	Registry	of										R.	Lindemann;	D.	Baghdasaryan;	B.	Hill.	FIDO	UAF	Registry	of
										Predefined	Values.	FIDO	Alliance	Proposed	Standard.	URL:										Predefined	Values.	FIDO	Alliance	Proposed	Standard.	URL:
										https://fidoalliance.org/specs/fido-uaf-v1.0-ps-20141208/fido-ua										https://fidoalliance.org/specs/fido-uaf-v1.0-ps-20141208/fido-ua
										f-reg-v1.0-ps-20141208.html										f-reg-v1.0-ps-20141208.html

			[FIPS-180-4]			[FIPS-180-4]
										FIPS	PUB	180-4	Secure	Hash	Standard.	URL:										FIPS	PUB	180-4	Secure	Hash	Standard.	URL:
										http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf										http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf

			[HTML]			[HTML]
										Anne	van	Kesteren;	et	al.	HTML	Standard.	Living	Standard.	URL:										Anne	van	Kesteren;	et	al.	HTML	Standard.	Living	Standard.	URL:
										https://html.spec.whatwg.org/multipage/										https://html.spec.whatwg.org/multipage/

			[HTML51]			[HTML51]
										Steve	Faulkner;	et	al.	HTML	5.1.	URL:										Steve	Faulkner;	et	al.	HTML	5.1.	URL:
										https://w3c.github.io/html/										https://w3c.github.io/html/

			[OSCCA-SM3]			[OSCCA-SM3]
										SM3	Cryptographic	Hash	Algorithm.	December	2010.	URL:										SM3	Cryptographic	Hash	Algorithm.	December	2010.	URL:
										http://www.oscca.gov.cn/UpFile/20101222141857786.pdf										http://www.oscca.gov.cn/UpFile/20101222141857786.pdf

			[RFC2119]			[RFC2119]
										S.	Bradner.	Key	words	for	use	in	RFCs	to	Indicate	Requirement										S.	Bradner.	Key	words	for	use	in	RFCs	to	Indicate	Requirement

59/72



/Users/jehodges/Documents/work/standards/W3C/webauthn/index-vgb-u2f-attestation-0d0fcea.txt,	Top	line:	3650

										Levels.	March	1997.	Best	Current	Practice.	URL:										Levels.	March	1997.	Best	Current	Practice.	URL:
										https://tools.ietf.org/html/rfc2119										https://tools.ietf.org/html/rfc2119

			[RFC4648]			[RFC4648]
										S.	Josefsson.	The	Base16,	Base32,	and	Base64	Data	Encodings.										S.	Josefsson.	The	Base16,	Base32,	and	Base64	Data	Encodings.
										October	2006.	Proposed	Standard.	URL:										October	2006.	Proposed	Standard.	URL:
										https://tools.ietf.org/html/rfc4648										https://tools.ietf.org/html/rfc4648

			[RFC5234]			[RFC5234]
										D.	Crocker,	Ed.;	P.	Overell.	Augmented	BNF	for	Syntax										D.	Crocker,	Ed.;	P.	Overell.	Augmented	BNF	for	Syntax
										Specifications:	ABNF.	January	2008.	Internet	Standard.	URL:										Specifications:	ABNF.	January	2008.	Internet	Standard.	URL:
										https://tools.ietf.org/html/rfc5234										https://tools.ietf.org/html/rfc5234

			[RFC5890]			[RFC5890]
										J.	Klensin.	Internationalized	Domain	Names	for	Applications										J.	Klensin.	Internationalized	Domain	Names	for	Applications
										(IDNA):	Definitions	and	Document	Framework.	August	2010.										(IDNA):	Definitions	and	Document	Framework.	August	2010.
										Proposed	Standard.	URL:	https://tools.ietf.org/html/rfc5890										Proposed	Standard.	URL:	https://tools.ietf.org/html/rfc5890

			[RFC7518]			[RFC7518]
										M.	Jones.	JSON	Web	Algorithms	(JWA).	May	2015.	Proposed										M.	Jones.	JSON	Web	Algorithms	(JWA).	May	2015.	Proposed
										Standard.	URL:	https://tools.ietf.org/html/rfc7518										Standard.	URL:	https://tools.ietf.org/html/rfc7518

			[WebCryptoAPI]			[WebCryptoAPI]
										Mark	Watson.	Web	Cryptography	API.	URL:										Mark	Watson.	Web	Cryptography	API.	URL:
										https://w3c.github.io/webcrypto/Overview.html										https://w3c.github.io/webcrypto/Overview.html

			[WebIDL]			[WebIDL]
										Cameron	McCormack;	Boris	Zbarsky;	Tobie	Langel.	Web	IDL.	URL:										Cameron	McCormack;	Boris	Zbarsky;	Tobie	Langel.	Web	IDL.	URL:
										https://heycam.github.io/webidl/										https://heycam.github.io/webidl/

			[WebIDL-1]			[WebIDL-1]
										Cameron	McCormack.	WebIDL	Level	1.	URL:										Cameron	McCormack.	WebIDL	Level	1.	URL:
										https://www.w3.org/TR/2016/REC-WebIDL-1-20161215/										https://www.w3.org/TR/2016/REC-WebIDL-1-20161215/

		Informative	References		Informative	References

			[Ceremony]			[Ceremony]
										Carl	Ellison.	Ceremony	Design	and	Analysis.	2007.	URL:										Carl	Ellison.	Ceremony	Design	and	Analysis.	2007.	URL:
										https://eprint.iacr.org/2007/399.pdf										https://eprint.iacr.org/2007/399.pdf

			[FIDO-APPID]			[FIDO-APPID]
										D.	Balfanz;	et	al.	FIDO	AppID	and	Facets.	FIDO	Alliance	Review										D.	Balfanz;	et	al.	FIDO	AppID	and	Facets.	FIDO	Alliance	Review
										Draft.	URL:										Draft.	URL:
										https://fidoalliance.org/specs/fido-uaf-v1.1-rd-20161005/fido-ap										https://fidoalliance.org/specs/fido-uaf-v1.1-rd-20161005/fido-ap
										pid-and-facets-v1.1-rd-20161005.html										pid-and-facets-v1.1-rd-20161005.html

			[FIDO-U2F-Message-Formats]			[FIDO-U2F-Message-Formats]
										D.	Balfanz;	J.	Ehrensvard;	J.	Lang.	FIDO	U2F	Raw	Message										D.	Balfanz;	J.	Ehrensvard;	J.	Lang.	FIDO	U2F	Raw	Message
										Formats.	FIDO	Alliance	Implementation	Draft.	URL:										Formats.	FIDO	Alliance	Implementation	Draft.	URL:
										https://fidoalliance.org/specs/fido-u2f-v1.1-id-20160915/fido-u2										https://fidoalliance.org/specs/fido-u2f-v1.1-id-20160915/fido-u2
										f-raw-message-formats-v1.1-id-20160915.html										f-raw-message-formats-v1.1-id-20160915.html

			[FIDOMetadataService]			[FIDOMetadataService]
										R.	Lindemann;	B.	Hill;	D.	Baghdasaryan.	FIDO	Metadata	Service										R.	Lindemann;	B.	Hill;	D.	Baghdasaryan.	FIDO	Metadata	Service
										v1.0.	FIDO	Alliance	Proposed	Standard.	URL:										v1.0.	FIDO	Alliance	Proposed	Standard.	URL:
										https://fidoalliance.org/specs/fido-uaf-v1.0-ps-20141208/fido-ua										https://fidoalliance.org/specs/fido-uaf-v1.0-ps-20141208/fido-ua
										f-metadata-service-v1.0-ps-20141208.html										f-metadata-service-v1.0-ps-20141208.html

			[FIDOSecRef]			[FIDOSecRef]
										R.	Lindemann;	D.	Baghdasaryan;	B.	Hill.	FIDO	Security	Reference.										R.	Lindemann;	D.	Baghdasaryan;	B.	Hill.	FIDO	Security	Reference.
										FIDO	Alliance	Proposed	Standard.	URL:										FIDO	Alliance	Proposed	Standard.	URL:
										https://fidoalliance.org/specs/fido-uaf-v1.0-ps-20141208/fido-se										https://fidoalliance.org/specs/fido-uaf-v1.0-ps-20141208/fido-se

/Users/jehodges/Documents/work/standards/W3C/webauthn/index-vgb-u2f-attestation-dc90eab.txt,	Top	line:	3640

										Levels.	March	1997.	Best	Current	Practice.	URL:										Levels.	March	1997.	Best	Current	Practice.	URL:
										https://tools.ietf.org/html/rfc2119										https://tools.ietf.org/html/rfc2119

			[RFC4648]			[RFC4648]
										S.	Josefsson.	The	Base16,	Base32,	and	Base64	Data	Encodings.										S.	Josefsson.	The	Base16,	Base32,	and	Base64	Data	Encodings.
										October	2006.	Proposed	Standard.	URL:										October	2006.	Proposed	Standard.	URL:
										https://tools.ietf.org/html/rfc4648										https://tools.ietf.org/html/rfc4648

			[RFC5234]			[RFC5234]
										D.	Crocker,	Ed.;	P.	Overell.	Augmented	BNF	for	Syntax										D.	Crocker,	Ed.;	P.	Overell.	Augmented	BNF	for	Syntax
										Specifications:	ABNF.	January	2008.	Internet	Standard.	URL:										Specifications:	ABNF.	January	2008.	Internet	Standard.	URL:
										https://tools.ietf.org/html/rfc5234										https://tools.ietf.org/html/rfc5234

			[RFC5890]			[RFC5890]
										J.	Klensin.	Internationalized	Domain	Names	for	Applications										J.	Klensin.	Internationalized	Domain	Names	for	Applications
										(IDNA):	Definitions	and	Document	Framework.	August	2010.										(IDNA):	Definitions	and	Document	Framework.	August	2010.
										Proposed	Standard.	URL:	https://tools.ietf.org/html/rfc5890										Proposed	Standard.	URL:	https://tools.ietf.org/html/rfc5890

			[RFC7518]			[RFC7518]
										M.	Jones.	JSON	Web	Algorithms	(JWA).	May	2015.	Proposed										M.	Jones.	JSON	Web	Algorithms	(JWA).	May	2015.	Proposed
										Standard.	URL:	https://tools.ietf.org/html/rfc7518										Standard.	URL:	https://tools.ietf.org/html/rfc7518

			[WebCryptoAPI]			[WebCryptoAPI]
										Mark	Watson.	Web	Cryptography	API.	URL:										Mark	Watson.	Web	Cryptography	API.	URL:
										https://w3c.github.io/webcrypto/Overview.html										https://w3c.github.io/webcrypto/Overview.html

			[WebIDL]			[WebIDL]
										Cameron	McCormack;	Boris	Zbarsky;	Tobie	Langel.	Web	IDL.	URL:										Cameron	McCormack;	Boris	Zbarsky;	Tobie	Langel.	Web	IDL.	URL:
										https://heycam.github.io/webidl/										https://heycam.github.io/webidl/

			[WebIDL-1]			[WebIDL-1]
										Cameron	McCormack.	WebIDL	Level	1.	URL:										Cameron	McCormack.	WebIDL	Level	1.	URL:
										https://www.w3.org/TR/2016/REC-WebIDL-1-20161215/										https://www.w3.org/TR/2016/REC-WebIDL-1-20161215/

		Informative	References		Informative	References

			[Ceremony]			[Ceremony]
										Carl	Ellison.	Ceremony	Design	and	Analysis.	2007.	URL:										Carl	Ellison.	Ceremony	Design	and	Analysis.	2007.	URL:
										https://eprint.iacr.org/2007/399.pdf										https://eprint.iacr.org/2007/399.pdf

			[FIDO-APPID]			[FIDO-APPID]
										D.	Balfanz;	et	al.	FIDO	AppID	and	Facets.	FIDO	Alliance	Review										D.	Balfanz;	et	al.	FIDO	AppID	and	Facets.	FIDO	Alliance	Review
										Draft.	URL:										Draft.	URL:
										https://fidoalliance.org/specs/fido-uaf-v1.1-rd-20161005/fido-ap										https://fidoalliance.org/specs/fido-uaf-v1.1-rd-20161005/fido-ap
										pid-and-facets-v1.1-rd-20161005.html										pid-and-facets-v1.1-rd-20161005.html

			[FIDO-U2F-Message-Formats]			[FIDO-U2F-Message-Formats]
										D.	Balfanz;	J.	Ehrensvard;	J.	Lang.	FIDO	U2F	Raw	Message										D.	Balfanz;	J.	Ehrensvard;	J.	Lang.	FIDO	U2F	Raw	Message
										Formats.	FIDO	Alliance	Implementation	Draft.	URL:										Formats.	FIDO	Alliance	Implementation	Draft.	URL:
										https://fidoalliance.org/specs/fido-u2f-v1.1-id-20160915/fido-u2										https://fidoalliance.org/specs/fido-u2f-v1.1-id-20160915/fido-u2
										f-raw-message-formats-v1.1-id-20160915.html										f-raw-message-formats-v1.1-id-20160915.html

			[FIDOMetadataService]			[FIDOMetadataService]
										R.	Lindemann;	B.	Hill;	D.	Baghdasaryan.	FIDO	Metadata	Service										R.	Lindemann;	B.	Hill;	D.	Baghdasaryan.	FIDO	Metadata	Service
										v1.0.	FIDO	Alliance	Proposed	Standard.	URL:										v1.0.	FIDO	Alliance	Proposed	Standard.	URL:
										https://fidoalliance.org/specs/fido-uaf-v1.0-ps-20141208/fido-ua										https://fidoalliance.org/specs/fido-uaf-v1.0-ps-20141208/fido-ua
										f-metadata-service-v1.0-ps-20141208.html										f-metadata-service-v1.0-ps-20141208.html

			[FIDOSecRef]			[FIDOSecRef]
										R.	Lindemann;	D.	Baghdasaryan;	B.	Hill.	FIDO	Security	Reference.										R.	Lindemann;	D.	Baghdasaryan;	B.	Hill.	FIDO	Security	Reference.
										FIDO	Alliance	Proposed	Standard.	URL:										FIDO	Alliance	Proposed	Standard.	URL:
										https://fidoalliance.org/specs/fido-uaf-v1.0-ps-20141208/fido-se										https://fidoalliance.org/specs/fido-uaf-v1.0-ps-20141208/fido-se

60/72



/Users/jehodges/Documents/work/standards/W3C/webauthn/index-vgb-u2f-attestation-0d0fcea.txt,	Top	line:	3712

										curity-ref-v1.0-ps-20141208.html										curity-ref-v1.0-ps-20141208.html

			[GeoJSON]			[GeoJSON]
										The	GeoJSON	Format	Specification.	URL:										The	GeoJSON	Format	Specification.	URL:
										http://geojson.org/geojson-spec.html										http://geojson.org/geojson-spec.html

			[RFC4949]			[RFC4949]
										R.	Shirey.	Internet	Security	Glossary,	Version	2.	August	2007.										R.	Shirey.	Internet	Security	Glossary,	Version	2.	August	2007.
										Informational.	URL:	https://tools.ietf.org/html/rfc4949										Informational.	URL:	https://tools.ietf.org/html/rfc4949

			[RFC5280]			[RFC5280]
										D.	Cooper;	et	al.	Internet	X.509	Public	Key	Infrastructure										D.	Cooper;	et	al.	Internet	X.509	Public	Key	Infrastructure
										Certificate	and	Certificate	Revocation	List	(CRL)	Profile.	May										Certificate	and	Certificate	Revocation	List	(CRL)	Profile.	May
										2008.	Proposed	Standard.	URL:										2008.	Proposed	Standard.	URL:
										https://tools.ietf.org/html/rfc5280										https://tools.ietf.org/html/rfc5280

			[RFC6454]			[RFC6454]
										A.	Barth.	The	Web	Origin	Concept.	December	2011.	Proposed										A.	Barth.	The	Web	Origin	Concept.	December	2011.	Proposed
										Standard.	URL:	https://tools.ietf.org/html/rfc6454										Standard.	URL:	https://tools.ietf.org/html/rfc6454

			[RFC7049]			[RFC7049]
										C.	Bormann;	P.	Hoffman.	Concise	Binary	Object	Representation										C.	Bormann;	P.	Hoffman.	Concise	Binary	Object	Representation
										(CBOR).	October	2013.	Proposed	Standard.	URL:										(CBOR).	October	2013.	Proposed	Standard.	URL:
										https://tools.ietf.org/html/rfc7049										https://tools.ietf.org/html/rfc7049

			[RFC7159]			[RFC7159]
										T.	Bray,	Ed..	The	JavaScript	Object	Notation	(JSON)	Data										T.	Bray,	Ed..	The	JavaScript	Object	Notation	(JSON)	Data
										Interchange	Format.	March	2014.	Proposed	Standard.	URL:										Interchange	Format.	March	2014.	Proposed	Standard.	URL:
										https://tools.ietf.org/html/rfc7159										https://tools.ietf.org/html/rfc7159

			[RFC7515]			[RFC7515]
										M.	Jones;	J.	Bradley;	N.	Sakimura.	JSON	Web	Signature	(JWS).	May										M.	Jones;	J.	Bradley;	N.	Sakimura.	JSON	Web	Signature	(JWS).	May
										2015.	Proposed	Standard.	URL:										2015.	Proposed	Standard.	URL:
										https://tools.ietf.org/html/rfc7515										https://tools.ietf.org/html/rfc7515

			[SECURE-CONTEXTS]			[SECURE-CONTEXTS]
										Mike	West.	Secure	Contexts.	URL:										Mike	West.	Secure	Contexts.	URL:
										https://w3c.github.io/webappsec-secure-contexts/										https://w3c.github.io/webappsec-secure-contexts/

			[SP800-107r1]			[SP800-107r1]
										Quynh	Dang.	NIST	Special	Publication	800-107:	Recommendation	for										Quynh	Dang.	NIST	Special	Publication	800-107:	Recommendation	for
										Applications	Using	Approved	Hash	Algorithms.	August	2012.	URL:										Applications	Using	Approved	Hash	Algorithms.	August	2012.	URL:
										http://csrc.nist.gov/publications/nistpubs/800-107-rev1/sp800-10										http://csrc.nist.gov/publications/nistpubs/800-107-rev1/sp800-10
										7-rev1.pdf										7-rev1.pdf

			[TPMv2-EK-Profile]			[TPMv2-EK-Profile]
										TCG	EK	Credential	Profile	for	TPM	Family	2.0.	URL:										TCG	EK	Credential	Profile	for	TPM	Family	2.0.	URL:
										http://www.trustedcomputinggroup.org/wp-content/uploads/Credenti										http://www.trustedcomputinggroup.org/wp-content/uploads/Credenti
										al_Profile_EK_V2.0_R14_published.pdf										al_Profile_EK_V2.0_R14_published.pdf

			[TPMv2-Part1]			[TPMv2-Part1]
										Trusted	Platform	Module	Library,	Part	1:	Architecture.	URL:										Trusted	Platform	Module	Library,	Part	1:	Architecture.	URL:
										http://www.trustedcomputinggroup.org/wp-content/uploads/TPM-Rev-										http://www.trustedcomputinggroup.org/wp-content/uploads/TPM-Rev-
										2.0-Part-1-Architecture-01.16-1.pdf										2.0-Part-1-Architecture-01.16-1.pdf

			[TPMv2-Part2]			[TPMv2-Part2]
										Trusted	Platform	Module	Library,	Part	2:	Structures.	URL:										Trusted	Platform	Module	Library,	Part	2:	Structures.	URL:
										http://www.trustedcomputinggroup.org/wp-content/uploads/TPM-Rev-										http://www.trustedcomputinggroup.org/wp-content/uploads/TPM-Rev-
										2.0-Part-2-Structures-01.16-1.pdf										2.0-Part-2-Structures-01.16-1.pdf

			[TPMv2-Part3]			[TPMv2-Part3]
										Trusted	Platform	Module	Library,	Part	3:	Commands.	URL:										Trusted	Platform	Module	Library,	Part	3:	Commands.	URL:

/Users/jehodges/Documents/work/standards/W3C/webauthn/index-vgb-u2f-attestation-dc90eab.txt,	Top	line:	3702

										curity-ref-v1.0-ps-20141208.html										curity-ref-v1.0-ps-20141208.html

			[GeoJSON]			[GeoJSON]
										The	GeoJSON	Format	Specification.	URL:										The	GeoJSON	Format	Specification.	URL:
										http://geojson.org/geojson-spec.html										http://geojson.org/geojson-spec.html

			[RFC4949]			[RFC4949]
										R.	Shirey.	Internet	Security	Glossary,	Version	2.	August	2007.										R.	Shirey.	Internet	Security	Glossary,	Version	2.	August	2007.
										Informational.	URL:	https://tools.ietf.org/html/rfc4949										Informational.	URL:	https://tools.ietf.org/html/rfc4949

			[RFC5280]			[RFC5280]
										D.	Cooper;	et	al.	Internet	X.509	Public	Key	Infrastructure										D.	Cooper;	et	al.	Internet	X.509	Public	Key	Infrastructure
										Certificate	and	Certificate	Revocation	List	(CRL)	Profile.	May										Certificate	and	Certificate	Revocation	List	(CRL)	Profile.	May
										2008.	Proposed	Standard.	URL:										2008.	Proposed	Standard.	URL:
										https://tools.ietf.org/html/rfc5280										https://tools.ietf.org/html/rfc5280

			[RFC6454]			[RFC6454]
										A.	Barth.	The	Web	Origin	Concept.	December	2011.	Proposed										A.	Barth.	The	Web	Origin	Concept.	December	2011.	Proposed
										Standard.	URL:	https://tools.ietf.org/html/rfc6454										Standard.	URL:	https://tools.ietf.org/html/rfc6454

			[RFC7049]			[RFC7049]
										C.	Bormann;	P.	Hoffman.	Concise	Binary	Object	Representation										C.	Bormann;	P.	Hoffman.	Concise	Binary	Object	Representation
										(CBOR).	October	2013.	Proposed	Standard.	URL:										(CBOR).	October	2013.	Proposed	Standard.	URL:
										https://tools.ietf.org/html/rfc7049										https://tools.ietf.org/html/rfc7049

			[RFC7159]			[RFC7159]
										T.	Bray,	Ed..	The	JavaScript	Object	Notation	(JSON)	Data										T.	Bray,	Ed..	The	JavaScript	Object	Notation	(JSON)	Data
										Interchange	Format.	March	2014.	Proposed	Standard.	URL:										Interchange	Format.	March	2014.	Proposed	Standard.	URL:
										https://tools.ietf.org/html/rfc7159										https://tools.ietf.org/html/rfc7159

			[RFC7515]			[RFC7515]
										M.	Jones;	J.	Bradley;	N.	Sakimura.	JSON	Web	Signature	(JWS).	May										M.	Jones;	J.	Bradley;	N.	Sakimura.	JSON	Web	Signature	(JWS).	May
										2015.	Proposed	Standard.	URL:										2015.	Proposed	Standard.	URL:
										https://tools.ietf.org/html/rfc7515										https://tools.ietf.org/html/rfc7515

			[SECURE-CONTEXTS]			[SECURE-CONTEXTS]
										Mike	West.	Secure	Contexts.	URL:										Mike	West.	Secure	Contexts.	URL:
										https://w3c.github.io/webappsec-secure-contexts/										https://w3c.github.io/webappsec-secure-contexts/

			[SP800-107r1]			[SP800-107r1]
										Quynh	Dang.	NIST	Special	Publication	800-107:	Recommendation	for										Quynh	Dang.	NIST	Special	Publication	800-107:	Recommendation	for
										Applications	Using	Approved	Hash	Algorithms.	August	2012.	URL:										Applications	Using	Approved	Hash	Algorithms.	August	2012.	URL:
										http://csrc.nist.gov/publications/nistpubs/800-107-rev1/sp800-10										http://csrc.nist.gov/publications/nistpubs/800-107-rev1/sp800-10
										7-rev1.pdf										7-rev1.pdf

			[TPMv2-EK-Profile]			[TPMv2-EK-Profile]
										TCG	EK	Credential	Profile	for	TPM	Family	2.0.	URL:										TCG	EK	Credential	Profile	for	TPM	Family	2.0.	URL:
										http://www.trustedcomputinggroup.org/wp-content/uploads/Credenti										http://www.trustedcomputinggroup.org/wp-content/uploads/Credenti
										al_Profile_EK_V2.0_R14_published.pdf										al_Profile_EK_V2.0_R14_published.pdf

			[TPMv2-Part1]			[TPMv2-Part1]
										Trusted	Platform	Module	Library,	Part	1:	Architecture.	URL:										Trusted	Platform	Module	Library,	Part	1:	Architecture.	URL:
										http://www.trustedcomputinggroup.org/wp-content/uploads/TPM-Rev-										http://www.trustedcomputinggroup.org/wp-content/uploads/TPM-Rev-
										2.0-Part-1-Architecture-01.16-1.pdf										2.0-Part-1-Architecture-01.16-1.pdf

			[TPMv2-Part2]			[TPMv2-Part2]
										Trusted	Platform	Module	Library,	Part	2:	Structures.	URL:										Trusted	Platform	Module	Library,	Part	2:	Structures.	URL:
										http://www.trustedcomputinggroup.org/wp-content/uploads/TPM-Rev-										http://www.trustedcomputinggroup.org/wp-content/uploads/TPM-Rev-
										2.0-Part-2-Structures-01.16-1.pdf										2.0-Part-2-Structures-01.16-1.pdf

			[TPMv2-Part3]			[TPMv2-Part3]
										Trusted	Platform	Module	Library,	Part	3:	Commands.	URL:										Trusted	Platform	Module	Library,	Part	3:	Commands.	URL:

61/72



/Users/jehodges/Documents/work/standards/W3C/webauthn/index-vgb-u2f-attestation-0d0fcea.txt,	Top	line:	3774

										http://www.trustedcomputinggroup.org/wp-content/uploads/TPM-Rev-										http://www.trustedcomputinggroup.org/wp-content/uploads/TPM-Rev-
										2.0-Part-3-Commands-01.16-1.pdf										2.0-Part-3-Commands-01.16-1.pdf

			[UAFProtocol]			[UAFProtocol]
										R.	Lindemann;	et	al.	FIDO	UAF	Protocol	Specification	v1.0.	FIDO										R.	Lindemann;	et	al.	FIDO	UAF	Protocol	Specification	v1.0.	FIDO
										Alliance	Proposed	Standard.	URL:										Alliance	Proposed	Standard.	URL:
										https://fidoalliance.org/specs/fido-uaf-v1.0-ps-20141208/fido-ua										https://fidoalliance.org/specs/fido-uaf-v1.0-ps-20141208/fido-ua
										f-protocol-v1.0-ps-20141208.html										f-protocol-v1.0-ps-20141208.html

			[WebAuthn-Registries]			[WebAuthn-Registries]
										Jeff	Hodges.	Registries	for	Web	Authentication	(WebAuthn).	June										Jeff	Hodges.	Registries	for	Web	Authentication	(WebAuthn).	June
										2016.	Active	Internet-Draft.	URL:										2016.	Active	Internet-Draft.	URL:
										https://xml2rfc.tools.ietf.org/cgi-bin/xml2rfc.cgi?modeAsFormat=										https://xml2rfc.tools.ietf.org/cgi-bin/xml2rfc.cgi?modeAsFormat=
										html/ascii&url=https://raw.githubusercontent.com/w3c/webauthn/ma										html/ascii&url=https://raw.githubusercontent.com/w3c/webauthn/ma
										ster/draft-hodges-webauthn-registries.xml#46923110554855074732										ster/draft-hodges-webauthn-registries.xml#46923110554855074732

IDL	IndexIDL	Index

partial	interface	Navigator	{partial	interface	Navigator	{
				readonly	attribute	WebAuthentication	authentication;				readonly	attribute	WebAuthentication	authentication;
};};

[SecureContext][SecureContext]
interface	WebAuthentication	{interface	WebAuthentication	{
				Promise	<	ScopedCredentialInfo	>	makeCredential	(				Promise	<	ScopedCredentialInfo	>	makeCredential	(
								Account																																	accountInformation,								Account																																	accountInformation,
								sequence	<	ScopedCredentialParameters	>	cryptoParameters,								sequence	<	ScopedCredentialParameters	>	cryptoParameters,
								BufferSource																												attestationChallenge,								BufferSource																												attestationChallenge,
								optional	ScopedCredentialOptions								options								optional	ScopedCredentialOptions								options
				);				);

				Promise	<	AuthenticationAssertion	>	getAssertion	(				Promise	<	AuthenticationAssertion	>	getAssertion	(
								BufferSource																				assertionChallenge,								BufferSource																				assertionChallenge,
								optional	AssertionOptions							options								optional	AssertionOptions							options
				);				);
};};

[SecureContext][SecureContext]
interface	ScopedCredentialInfo	{interface	ScopedCredentialInfo	{
				readonly				attribute	ArrayBuffer			clientData;				readonly				attribute	ArrayBuffer			clientData;
				readonly				attribute	ArrayBuffer			attestationObject;				readonly				attribute	ArrayBuffer			attestationObject;
};};

dictionary	Account	{dictionary	Account	{
				required	DOMString	rpDisplayName;				required	DOMString	rpDisplayName;
				required	DOMString	displayName;				required	DOMString	displayName;
				required	DOMString	id;				required	DOMString	id;
				DOMString										name;				DOMString										name;
				DOMString										imageURL;				DOMString										imageURL;
};};

dictionary	ScopedCredentialParameters	{dictionary	ScopedCredentialParameters	{
				required	ScopedCredentialType		type;				required	ScopedCredentialType		type;
				required	AlgorithmIdentifier			algorithm;				required	AlgorithmIdentifier			algorithm;
};};

dictionary	ScopedCredentialOptions	{dictionary	ScopedCredentialOptions	{
				unsigned	long																											timeoutSeconds;				unsigned	long																											timeoutSeconds;
				USVString																															rpId;				USVString																															rpId;
				sequence	<	ScopedCredentialDescriptor	>	excludeList	=	[];				sequence	<	ScopedCredentialDescriptor	>	excludeList	=	[];
				Attachment																														attachment;				Attachment																														attachment;
				AuthenticationExtensions																extensions;				AuthenticationExtensions																extensions;

/Users/jehodges/Documents/work/standards/W3C/webauthn/index-vgb-u2f-attestation-dc90eab.txt,	Top	line:	3764

										http://www.trustedcomputinggroup.org/wp-content/uploads/TPM-Rev-										http://www.trustedcomputinggroup.org/wp-content/uploads/TPM-Rev-
										2.0-Part-3-Commands-01.16-1.pdf										2.0-Part-3-Commands-01.16-1.pdf

			[UAFProtocol]			[UAFProtocol]
										R.	Lindemann;	et	al.	FIDO	UAF	Protocol	Specification	v1.0.	FIDO										R.	Lindemann;	et	al.	FIDO	UAF	Protocol	Specification	v1.0.	FIDO
										Alliance	Proposed	Standard.	URL:										Alliance	Proposed	Standard.	URL:
										https://fidoalliance.org/specs/fido-uaf-v1.0-ps-20141208/fido-ua										https://fidoalliance.org/specs/fido-uaf-v1.0-ps-20141208/fido-ua
										f-protocol-v1.0-ps-20141208.html										f-protocol-v1.0-ps-20141208.html

			[WebAuthn-Registries]			[WebAuthn-Registries]
										Jeff	Hodges.	Registries	for	Web	Authentication	(WebAuthn).	June										Jeff	Hodges.	Registries	for	Web	Authentication	(WebAuthn).	June
										2016.	Active	Internet-Draft.	URL:										2016.	Active	Internet-Draft.	URL:
										https://xml2rfc.tools.ietf.org/cgi-bin/xml2rfc.cgi?modeAsFormat=										https://xml2rfc.tools.ietf.org/cgi-bin/xml2rfc.cgi?modeAsFormat=
										html/ascii&url=https://raw.githubusercontent.com/w3c/webauthn/ma										html/ascii&url=https://raw.githubusercontent.com/w3c/webauthn/ma
										ster/draft-hodges-webauthn-registries.xml#46923110554855074732										ster/draft-hodges-webauthn-registries.xml#46923110554855074732

IDL	IndexIDL	Index

partial	interface	Navigator	{partial	interface	Navigator	{
				readonly	attribute	WebAuthentication	authentication;				readonly	attribute	WebAuthentication	authentication;
};};

[SecureContext][SecureContext]
interface	WebAuthentication	{interface	WebAuthentication	{
				Promise	<	ScopedCredentialInfo	>	makeCredential	(				Promise	<	ScopedCredentialInfo	>	makeCredential	(
								Account																																	accountInformation,								Account																																	accountInformation,
								sequence	<	ScopedCredentialParameters	>	cryptoParameters,								sequence	<	ScopedCredentialParameters	>	cryptoParameters,
								BufferSource																												attestationChallenge,								BufferSource																												attestationChallenge,
								optional	ScopedCredentialOptions								options								optional	ScopedCredentialOptions								options
				);				);

				Promise	<	AuthenticationAssertion	>	getAssertion	(				Promise	<	AuthenticationAssertion	>	getAssertion	(
								BufferSource																				assertionChallenge,								BufferSource																				assertionChallenge,
								optional	AssertionOptions							options								optional	AssertionOptions							options
				);				);
};};

[SecureContext][SecureContext]
interface	ScopedCredentialInfo	{interface	ScopedCredentialInfo	{
				readonly				attribute	ArrayBuffer			clientData;				readonly				attribute	ArrayBuffer			clientData;
				readonly				attribute	ArrayBuffer			attestationObject;				readonly				attribute	ArrayBuffer			attestationObject;
};};

dictionary	Account	{dictionary	Account	{
				required	DOMString	rpDisplayName;				required	DOMString	rpDisplayName;
				required	DOMString	displayName;				required	DOMString	displayName;
				required	DOMString	id;				required	DOMString	id;
				DOMString										name;				DOMString										name;
				DOMString										imageURL;				DOMString										imageURL;
};};

dictionary	ScopedCredentialParameters	{dictionary	ScopedCredentialParameters	{
				required	ScopedCredentialType		type;				required	ScopedCredentialType		type;
				required	AlgorithmIdentifier			algorithm;				required	AlgorithmIdentifier			algorithm;
};};

dictionary	ScopedCredentialOptions	{dictionary	ScopedCredentialOptions	{
				unsigned	long																											timeoutSeconds;				unsigned	long																											timeoutSeconds;
				USVString																															rpId;				USVString																															rpId;
				sequence	<	ScopedCredentialDescriptor	>	excludeList	=	[];				sequence	<	ScopedCredentialDescriptor	>	excludeList	=	[];
				Attachment																														attachment;				Attachment																														attachment;
				AuthenticationExtensions																extensions;				AuthenticationExtensions																extensions;

62/72



/Users/jehodges/Documents/work/standards/W3C/webauthn/index-vgb-u2f-attestation-0d0fcea.txt,	Top	line:	3836

};};

enum	Attachment	{enum	Attachment	{
				"platform",				"platform",
				"cross-platform"				"cross-platform"
};};

[SecureContext][SecureContext]
interface	AuthenticationAssertion	{interface	AuthenticationAssertion	{
				readonly	attribute	ScopedCredential		credential;				readonly	attribute	ScopedCredential		credential;
				readonly	attribute	ArrayBuffer							clientData;				readonly	attribute	ArrayBuffer							clientData;
				readonly	attribute	ArrayBuffer							authenticatorData;				readonly	attribute	ArrayBuffer							authenticatorData;
				readonly	attribute	ArrayBuffer							signature;				readonly	attribute	ArrayBuffer							signature;
};};

dictionary	AssertionOptions	{dictionary	AssertionOptions	{
				unsigned	long																											timeoutSeconds;				unsigned	long																											timeoutSeconds;
				USVString																															rpId;				USVString																															rpId;
				sequence	<	ScopedCredentialDescriptor	>	allowList	=	[];				sequence	<	ScopedCredentialDescriptor	>	allowList	=	[];
				AuthenticationExtensions																extensions;				AuthenticationExtensions																extensions;
};};

dictionary	AuthenticationExtensions	{dictionary	AuthenticationExtensions	{
};};

dictionary	ClientData	{dictionary	ClientData	{
				required	DOMString											challenge;				required	DOMString											challenge;
				required	DOMString											origin;				required	DOMString											origin;
				required	AlgorithmIdentifier	hashAlg;				required	AlgorithmIdentifier	hashAlg;
				DOMString																				tokenBinding;				DOMString																				tokenBinding;
				AuthenticationExtensions					extensions;				AuthenticationExtensions					extensions;
};};

enum	ScopedCredentialType	{enum	ScopedCredentialType	{
				"ScopedCred"				"ScopedCred"
};};

[SecureContext][SecureContext]
interface	ScopedCredential	{interface	ScopedCredential	{
				readonly	attribute	ScopedCredentialType	type;				readonly	attribute	ScopedCredentialType	type;
				readonly	attribute	ArrayBuffer										id;				readonly	attribute	ArrayBuffer										id;
};};

dictionary	ScopedCredentialDescriptor	{dictionary	ScopedCredentialDescriptor	{
				required	ScopedCredentialType	type;				required	ScopedCredentialType	type;
				required	BufferSource			id;				required	BufferSource			id;
				sequence	<	Transport	>		transports;				sequence	<	Transport	>		transports;
};};

enum	Transport	{enum	Transport	{
				"usb",				"usb",
				"nfc",				"nfc",
				"ble"				"ble"
};};

typedef	sequence	<	AAGUID	>	AuthenticatorSelectionList;typedef	sequence	<	AAGUID	>	AuthenticatorSelectionList;

typedef	BufferSource	AAGUID;typedef	BufferSource	AAGUID;

			#promisesReferenced	in:			#promisesReferenced	in:
					*	4.1.1.	Create	a	new	credential	(makeCredential()	method)					*	4.1.1.	Create	a	new	credential	(makeCredential()	method)

/Users/jehodges/Documents/work/standards/W3C/webauthn/index-vgb-u2f-attestation-dc90eab.txt,	Top	line:	3826

};};

enum	Attachment	{enum	Attachment	{
				"platform",				"platform",
				"cross-platform"				"cross-platform"
};};

[SecureContext][SecureContext]
interface	AuthenticationAssertion	{interface	AuthenticationAssertion	{
				readonly	attribute	ScopedCredential		credential;				readonly	attribute	ScopedCredential		credential;
				readonly	attribute	ArrayBuffer							clientData;				readonly	attribute	ArrayBuffer							clientData;
				readonly	attribute	ArrayBuffer							authenticatorData;				readonly	attribute	ArrayBuffer							authenticatorData;
				readonly	attribute	ArrayBuffer							signature;				readonly	attribute	ArrayBuffer							signature;
};};

dictionary	AssertionOptions	{dictionary	AssertionOptions	{
				unsigned	long																											timeoutSeconds;				unsigned	long																											timeoutSeconds;
				USVString																															rpId;				USVString																															rpId;
				sequence	<	ScopedCredentialDescriptor	>	allowList	=	[];				sequence	<	ScopedCredentialDescriptor	>	allowList	=	[];
				AuthenticationExtensions																extensions;				AuthenticationExtensions																extensions;
};};

dictionary	AuthenticationExtensions	{dictionary	AuthenticationExtensions	{
};};

dictionary	ClientData	{dictionary	ClientData	{
				required	DOMString											challenge;				required	DOMString											challenge;
				required	DOMString											origin;				required	DOMString											origin;
				required	AlgorithmIdentifier	hashAlg;				required	AlgorithmIdentifier	hashAlg;
				DOMString																				tokenBinding;				DOMString																				tokenBinding;
				AuthenticationExtensions					extensions;				AuthenticationExtensions					extensions;
};};

enum	ScopedCredentialType	{enum	ScopedCredentialType	{
				"ScopedCred"				"ScopedCred"
};};

[SecureContext][SecureContext]
interface	ScopedCredential	{interface	ScopedCredential	{
				readonly	attribute	ScopedCredentialType	type;				readonly	attribute	ScopedCredentialType	type;
				readonly	attribute	ArrayBuffer										id;				readonly	attribute	ArrayBuffer										id;
};};

dictionary	ScopedCredentialDescriptor	{dictionary	ScopedCredentialDescriptor	{
				required	ScopedCredentialType	type;				required	ScopedCredentialType	type;
				required	BufferSource			id;				required	BufferSource			id;
				sequence	<	Transport	>		transports;				sequence	<	Transport	>		transports;
};};

enum	Transport	{enum	Transport	{
				"usb",				"usb",
				"nfc",				"nfc",
				"ble"				"ble"
};};

typedef	sequence	<	AAGUID	>	AuthenticatorSelectionList;typedef	sequence	<	AAGUID	>	AuthenticatorSelectionList;

typedef	BufferSource	AAGUID;typedef	BufferSource	AAGUID;

			#promisesReferenced	in:			#promisesReferenced	in:
					*	4.1.1.	Create	a	new	credential	(makeCredential()	method)					*	4.1.1.	Create	a	new	credential	(makeCredential()	method)

63/72



/Users/jehodges/Documents/work/standards/W3C/webauthn/index-vgb-u2f-attestation-0d0fcea.txt,	Top	line:	3898

					*	4.1.2.	Use	an	existing	credential	(getAssertion()	method)					*	4.1.2.	Use	an	existing	credential	(getAssertion()	method)

			#domexceptionReferenced	in:			#domexceptionReferenced	in:
					*	4.1.1.	Create	a	new	credential	(makeCredential()	method)	(2)	(3)					*	4.1.1.	Create	a	new	credential	(makeCredential()	method)	(2)	(3)
					*	4.1.2.	Use	an	existing	credential	(getAssertion()	method)	(2)	(3)					*	4.1.2.	Use	an	existing	credential	(getAssertion()	method)	(2)	(3)

			#dictdef-algorithmidentifierReferenced	in:			#dictdef-algorithmidentifierReferenced	in:
					*	4.4.	Parameters	for	Credential	Generation	(dictionary					*	4.4.	Parameters	for	Credential	Generation	(dictionary
							ScopedCredentialParameters)							ScopedCredentialParameters)
					*	4.9.1.	Client	data	used	in	WebAuthn	signatures	(dictionary					*	4.9.1.	Client	data	used	in	WebAuthn	signatures	(dictionary
							ClientData)							ClientData)
					*	4.9.6.	Cryptographic	Algorithm	Identifier	(type					*	4.9.6.	Cryptographic	Algorithm	Identifier	(type
							AlgorithmIdentifier)							AlgorithmIdentifier)

			#ascii-case-insensitive-matchReferenced	in:			#ascii-case-insensitive-matchReferenced	in:
					*	6.1.	Registering	a	new	credential					*	6.1.	Registering	a	new	credential

			#attestation-objectsReferenced	in:			#attestation-objectsReferenced	in:
					*	4.	Web	Authentication	API					*	4.	Web	Authentication	API
					*	4.2.	Information	about	Scoped	Credential	(interface					*	4.2.	Information	about	Scoped	Credential	(interface
							ScopedCredentialInfo)							ScopedCredentialInfo)
					*	4.5.	Additional	options	for	Credential	Generation	(dictionary					*	4.5.	Additional	options	for	Credential	Generation	(dictionary
							ScopedCredentialOptions)							ScopedCredentialOptions)
					*	5.1.1.	The	authenticatorMakeCredential	operation	(2)					*	5.1.1.	The	authenticatorMakeCredential	operation	(2)
					*	5.2.2.	Attestation	data					*	5.2.2.	Attestation	data
					*	5.3.	Credential	Attestation	(2)					*	5.3.	Credential	Attestation	(2)
					*	5.3.3.	Generating	an	Attestation	Object	(2)	(3)					*	5.3.3.	Generating	an	Attestation	Object	(2)	(3)
					*	6.1.	Registering	a	new	credential					*	6.1.	Registering	a	new	credential

			#attestation-certificateReferenced	in:			#attestation-certificateReferenced	in:
					*	3.	Terminology	(2)					*	3.	Terminology	(2)
					*	7.3.1.	TPM	attestation	statement	certificate	requirements					*	7.3.1.	TPM	attestation	statement	certificate	requirements

			#attestation-key-pairReferenced	in:			#attestation-key-pairReferenced	in:
					*	3.	Terminology	(2)					*	3.	Terminology	(2)

			#authenticationReferenced	in:			#authenticationReferenced	in:
					*	1.	Introduction	(2)					*	1.	Introduction	(2)
					*	3.	Terminology	(2)	(3)					*	3.	Terminology	(2)	(3)

			#authentication-assertionReferenced	in:			#authentication-assertionReferenced	in:
					*	1.	Introduction					*	1.	Introduction
					*	3.	Terminology	(2)	(3)					*	3.	Terminology	(2)	(3)

			#authenticatorReferenced	in:			#authenticatorReferenced	in:
					*	1.	Introduction	(2)	(3)	(4)					*	1.	Introduction	(2)	(3)	(4)
					*	1.1.	Use	Cases					*	1.1.	Use	Cases
					*	2.	Conformance					*	2.	Conformance
					*	3.	Terminology	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)					*	3.	Terminology	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
					*	5.	WebAuthn	Authenticator	model					*	5.	WebAuthn	Authenticator	model
					*	5.2.	Signature	Format					*	5.2.	Signature	Format
					*	5.2.1.	Authenticator	data					*	5.2.1.	Authenticator	data
					*	5.2.3.	Generating	a	signature					*	5.2.3.	Generating	a	signature
					*	5.3.	Credential	Attestation					*	5.3.	Credential	Attestation
					*	5.3.4.1.	Privacy					*	5.3.4.1.	Privacy
					*	5.3.4.2.	Attestation	Certificate	and	Attestation	Certificate	CA					*	5.3.4.2.	Attestation	Certificate	and	Attestation	Certificate	CA
							Compromise							Compromise
					*	7.2.	Packed	Attestation	Statement	Format					*	7.2.	Packed	Attestation	Statement	Format
					*	7.4.	Android	Key	Attestation	Statement	Format					*	7.4.	Android	Key	Attestation	Statement	Format
					*	7.5.	Android	SafetyNet	Attestation	Statement	Format					*	7.5.	Android	SafetyNet	Attestation	Statement	Format
					*	9.4.	SupportedExtensions	Extension					*	9.4.	SupportedExtensions	Extension
					*	9.5.	User	Verification	Index	(UVI)	Extension					*	9.5.	User	Verification	Index	(UVI)	Extension

/Users/jehodges/Documents/work/standards/W3C/webauthn/index-vgb-u2f-attestation-dc90eab.txt,	Top	line:	3888

					*	4.1.2.	Use	an	existing	credential	(getAssertion()	method)					*	4.1.2.	Use	an	existing	credential	(getAssertion()	method)

			#domexceptionReferenced	in:			#domexceptionReferenced	in:
					*	4.1.1.	Create	a	new	credential	(makeCredential()	method)	(2)	(3)					*	4.1.1.	Create	a	new	credential	(makeCredential()	method)	(2)	(3)
					*	4.1.2.	Use	an	existing	credential	(getAssertion()	method)	(2)	(3)					*	4.1.2.	Use	an	existing	credential	(getAssertion()	method)	(2)	(3)

			#dictdef-algorithmidentifierReferenced	in:			#dictdef-algorithmidentifierReferenced	in:
					*	4.4.	Parameters	for	Credential	Generation	(dictionary					*	4.4.	Parameters	for	Credential	Generation	(dictionary
							ScopedCredentialParameters)							ScopedCredentialParameters)
					*	4.9.1.	Client	data	used	in	WebAuthn	signatures	(dictionary					*	4.9.1.	Client	data	used	in	WebAuthn	signatures	(dictionary
							ClientData)							ClientData)
					*	4.9.6.	Cryptographic	Algorithm	Identifier	(type					*	4.9.6.	Cryptographic	Algorithm	Identifier	(type
							AlgorithmIdentifier)							AlgorithmIdentifier)

			#ascii-case-insensitive-matchReferenced	in:			#ascii-case-insensitive-matchReferenced	in:
					*	6.1.	Registering	a	new	credential					*	6.1.	Registering	a	new	credential

			#attestation-objectsReferenced	in:			#attestation-objectsReferenced	in:
					*	4.	Web	Authentication	API					*	4.	Web	Authentication	API
					*	4.2.	Information	about	Scoped	Credential	(interface					*	4.2.	Information	about	Scoped	Credential	(interface
							ScopedCredentialInfo)							ScopedCredentialInfo)
					*	4.5.	Additional	options	for	Credential	Generation	(dictionary					*	4.5.	Additional	options	for	Credential	Generation	(dictionary
							ScopedCredentialOptions)							ScopedCredentialOptions)
					*	5.1.1.	The	authenticatorMakeCredential	operation	(2)					*	5.1.1.	The	authenticatorMakeCredential	operation	(2)
					*	5.2.2.	Attestation	data					*	5.2.2.	Attestation	data
					*	5.3.	Credential	Attestation	(2)					*	5.3.	Credential	Attestation	(2)
					*	5.3.3.	Generating	an	Attestation	Object	(2)	(3)					*	5.3.3.	Generating	an	Attestation	Object	(2)	(3)
					*	6.1.	Registering	a	new	credential					*	6.1.	Registering	a	new	credential

			#attestation-certificateReferenced	in:			#attestation-certificateReferenced	in:
					*	3.	Terminology	(2)					*	3.	Terminology	(2)
					*	7.3.1.	TPM	attestation	statement	certificate	requirements					*	7.3.1.	TPM	attestation	statement	certificate	requirements

			#attestation-key-pairReferenced	in:			#attestation-key-pairReferenced	in:
					*	3.	Terminology	(2)					*	3.	Terminology	(2)

			#authenticationReferenced	in:			#authenticationReferenced	in:
					*	1.	Introduction	(2)					*	1.	Introduction	(2)
					*	3.	Terminology	(2)	(3)					*	3.	Terminology	(2)	(3)

			#authentication-assertionReferenced	in:			#authentication-assertionReferenced	in:
					*	1.	Introduction					*	1.	Introduction
					*	3.	Terminology	(2)	(3)					*	3.	Terminology	(2)	(3)

			#authenticatorReferenced	in:			#authenticatorReferenced	in:
					*	1.	Introduction	(2)	(3)	(4)					*	1.	Introduction	(2)	(3)	(4)
					*	1.1.	Use	Cases					*	1.1.	Use	Cases
					*	2.	Conformance					*	2.	Conformance
					*	3.	Terminology	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)					*	3.	Terminology	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
					*	5.	WebAuthn	Authenticator	model					*	5.	WebAuthn	Authenticator	model
					*	5.2.	Signature	Format					*	5.2.	Signature	Format
					*	5.2.1.	Authenticator	data					*	5.2.1.	Authenticator	data
					*	5.2.3.	Generating	a	signature					*	5.2.3.	Generating	a	signature
					*	5.3.	Credential	Attestation					*	5.3.	Credential	Attestation
					*	5.3.4.1.	Privacy					*	5.3.4.1.	Privacy
					*	5.3.4.2.	Attestation	Certificate	and	Attestation	Certificate	CA					*	5.3.4.2.	Attestation	Certificate	and	Attestation	Certificate	CA
							Compromise							Compromise
					*	7.2.	Packed	Attestation	Statement	Format					*	7.2.	Packed	Attestation	Statement	Format
					*	7.4.	Android	Key	Attestation	Statement	Format					*	7.4.	Android	Key	Attestation	Statement	Format
					*	7.5.	Android	SafetyNet	Attestation	Statement	Format					*	7.5.	Android	SafetyNet	Attestation	Statement	Format
					*	9.4.	SupportedExtensions	Extension					*	9.4.	SupportedExtensions	Extension
					*	9.5.	User	Verification	Index	(UVI)	Extension					*	9.5.	User	Verification	Index	(UVI)	Extension

64/72



/Users/jehodges/Documents/work/standards/W3C/webauthn/index-vgb-u2f-attestation-0d0fcea.txt,	Top	line:	3960

					*	9.6.	Location	Extension	(2)	(3)	(4)					*	9.6.	Location	Extension	(2)	(3)	(4)
					*	9.7.	User	Verification	Mode	(UVM)	Extension					*	9.7.	User	Verification	Mode	(UVM)	Extension
					*	11.	Sample	scenarios					*	11.	Sample	scenarios

			#authorization-gestureReferenced	in:			#authorization-gestureReferenced	in:
					*	1.1.1.	Registration					*	1.1.1.	Registration
					*	1.1.2.	Authentication					*	1.1.2.	Authentication
					*	1.1.3.	Other	use	cases	and	configurations					*	1.1.3.	Other	use	cases	and	configurations

			#ceremonyReferenced	in:			#ceremonyReferenced	in:
					*	1.	Introduction					*	1.	Introduction
					*	3.	Terminology	(2)					*	3.	Terminology	(2)

			#conforming-user-agentReferenced	in:			#conforming-user-agentReferenced	in:
					*	1.	Introduction					*	1.	Introduction
					*	2.	Conformance	(2)	(3)					*	2.	Conformance	(2)	(3)
					*	3.	Terminology	(2)					*	3.	Terminology	(2)

			#credential-public-keyReferenced	in:			#credential-public-keyReferenced	in:
					*	3.	Terminology					*	3.	Terminology
					*	4.2.	Information	about	Scoped	Credential	(interface					*	4.2.	Information	about	Scoped	Credential	(interface
							ScopedCredentialInfo)							ScopedCredentialInfo)
					*	5.2.1.	Authenticator	data					*	5.2.1.	Authenticator	data
					*	7.2.	Packed	Attestation	Statement	Format					*	7.2.	Packed	Attestation	Statement	Format
					*	7.4.	Android	Key	Attestation	Statement	Format					*	7.4.	Android	Key	Attestation	Statement	Format
					*	11.1.	Registration	(2)					*	11.1.	Registration	(2)

			#credential-key-pairReferenced	in:			#credential-key-pairReferenced	in:
					*	3.	Terminology	(2)					*	3.	Terminology	(2)

			#registrationReferenced	in:			#registrationReferenced	in:
					*	1.	Introduction	(2)					*	1.	Introduction	(2)
					*	3.	Terminology	(2)	(3)	(4)	(5)	(6)					*	3.	Terminology	(2)	(3)	(4)	(5)	(6)

			#relying-partyReferenced	in:			#relying-partyReferenced	in:
					*	1.	Introduction	(2)	(3)	(4)					*	1.	Introduction	(2)	(3)	(4)
					*	3.	Terminology	(2)	(3)	(4)	(5)	(6)	(7)	(8)					*	3.	Terminology	(2)	(3)	(4)	(5)	(6)	(7)	(8)
					*	4.2.	Information	about	Scoped	Credential	(interface					*	4.2.	Information	about	Scoped	Credential	(interface
							ScopedCredentialInfo)							ScopedCredentialInfo)
					*	4.3.	User	Account	Information	(dictionary	Account)					*	4.3.	User	Account	Information	(dictionary	Account)
					*	4.5.	Additional	options	for	Credential	Generation	(dictionary					*	4.5.	Additional	options	for	Credential	Generation	(dictionary
							ScopedCredentialOptions)							ScopedCredentialOptions)
					*	5.	WebAuthn	Authenticator	model					*	5.	WebAuthn	Authenticator	model
					*	5.2.	Signature	Format					*	5.2.	Signature	Format
					*	5.3.	Credential	Attestation					*	5.3.	Credential	Attestation
					*	6.	Relying	Party	Operations					*	6.	Relying	Party	Operations
					*	8.3.	Extending	request	parameters					*	8.3.	Extending	request	parameters
					*	8.4.	Extending	client	processing					*	8.4.	Extending	client	processing
					*	8.6.	Example	extension					*	8.6.	Example	extension
					*	11.2.	Authentication					*	11.2.	Authentication
					*	11.3.	Decommissioning					*	11.3.	Decommissioning

			#relying-party-identifierReferenced	in:			#relying-party-identifierReferenced	in:
					*	5.	WebAuthn	Authenticator	model					*	5.	WebAuthn	Authenticator	model

			#rp-idReferenced	in:			#rp-idReferenced	in:
					*	3.	Terminology	(2)					*	3.	Terminology	(2)
					*	5.	WebAuthn	Authenticator	model					*	5.	WebAuthn	Authenticator	model

			#scoped-credentialReferenced	in:			#scoped-credentialReferenced	in:
					*	1.	Introduction	(2)	(3)	(4)	(5)					*	1.	Introduction	(2)	(3)	(4)	(5)
					*	3.	Terminology	(2)	(3)	(4)	(5)	(6)					*	3.	Terminology	(2)	(3)	(4)	(5)	(6)

/Users/jehodges/Documents/work/standards/W3C/webauthn/index-vgb-u2f-attestation-dc90eab.txt,	Top	line:	3950

					*	9.6.	Location	Extension	(2)	(3)	(4)					*	9.6.	Location	Extension	(2)	(3)	(4)
					*	9.7.	User	Verification	Mode	(UVM)	Extension					*	9.7.	User	Verification	Mode	(UVM)	Extension
					*	11.	Sample	scenarios					*	11.	Sample	scenarios

			#authorization-gestureReferenced	in:			#authorization-gestureReferenced	in:
					*	1.1.1.	Registration					*	1.1.1.	Registration
					*	1.1.2.	Authentication					*	1.1.2.	Authentication
					*	1.1.3.	Other	use	cases	and	configurations					*	1.1.3.	Other	use	cases	and	configurations

			#ceremonyReferenced	in:			#ceremonyReferenced	in:
					*	1.	Introduction					*	1.	Introduction
					*	3.	Terminology	(2)					*	3.	Terminology	(2)

			#conforming-user-agentReferenced	in:			#conforming-user-agentReferenced	in:
					*	1.	Introduction					*	1.	Introduction
					*	2.	Conformance	(2)	(3)					*	2.	Conformance	(2)	(3)
					*	3.	Terminology	(2)					*	3.	Terminology	(2)

			#credential-public-keyReferenced	in:			#credential-public-keyReferenced	in:
					*	3.	Terminology					*	3.	Terminology
					*	4.2.	Information	about	Scoped	Credential	(interface					*	4.2.	Information	about	Scoped	Credential	(interface
							ScopedCredentialInfo)							ScopedCredentialInfo)
					*	5.2.1.	Authenticator	data					*	5.2.1.	Authenticator	data

					*	7.4.	Android	Key	Attestation	Statement	Format					*	7.4.	Android	Key	Attestation	Statement	Format
					*	11.1.	Registration	(2)					*	11.1.	Registration	(2)

			#credential-key-pairReferenced	in:			#credential-key-pairReferenced	in:
					*	3.	Terminology	(2)					*	3.	Terminology	(2)

			#registrationReferenced	in:			#registrationReferenced	in:
					*	1.	Introduction	(2)					*	1.	Introduction	(2)
					*	3.	Terminology	(2)	(3)	(4)	(5)	(6)					*	3.	Terminology	(2)	(3)	(4)	(5)	(6)

			#relying-partyReferenced	in:			#relying-partyReferenced	in:
					*	1.	Introduction	(2)	(3)	(4)					*	1.	Introduction	(2)	(3)	(4)
					*	3.	Terminology	(2)	(3)	(4)	(5)	(6)	(7)	(8)					*	3.	Terminology	(2)	(3)	(4)	(5)	(6)	(7)	(8)
					*	4.2.	Information	about	Scoped	Credential	(interface					*	4.2.	Information	about	Scoped	Credential	(interface
							ScopedCredentialInfo)							ScopedCredentialInfo)
					*	4.3.	User	Account	Information	(dictionary	Account)					*	4.3.	User	Account	Information	(dictionary	Account)
					*	4.5.	Additional	options	for	Credential	Generation	(dictionary					*	4.5.	Additional	options	for	Credential	Generation	(dictionary
							ScopedCredentialOptions)							ScopedCredentialOptions)
					*	5.	WebAuthn	Authenticator	model					*	5.	WebAuthn	Authenticator	model
					*	5.2.	Signature	Format					*	5.2.	Signature	Format
					*	5.3.	Credential	Attestation					*	5.3.	Credential	Attestation
					*	6.	Relying	Party	Operations					*	6.	Relying	Party	Operations
					*	8.3.	Extending	request	parameters					*	8.3.	Extending	request	parameters
					*	8.4.	Extending	client	processing					*	8.4.	Extending	client	processing
					*	8.6.	Example	extension					*	8.6.	Example	extension
					*	11.2.	Authentication					*	11.2.	Authentication
					*	11.3.	Decommissioning					*	11.3.	Decommissioning

			#relying-party-identifierReferenced	in:			#relying-party-identifierReferenced	in:
					*	5.	WebAuthn	Authenticator	model					*	5.	WebAuthn	Authenticator	model

			#rp-idReferenced	in:			#rp-idReferenced	in:
					*	3.	Terminology	(2)					*	3.	Terminology	(2)
					*	5.	WebAuthn	Authenticator	model					*	5.	WebAuthn	Authenticator	model

			#scoped-credentialReferenced	in:			#scoped-credentialReferenced	in:
					*	1.	Introduction	(2)	(3)	(4)	(5)					*	1.	Introduction	(2)	(3)	(4)	(5)
					*	3.	Terminology	(2)	(3)	(4)	(5)	(6)					*	3.	Terminology	(2)	(3)	(4)	(5)	(6)

65/72



/Users/jehodges/Documents/work/standards/W3C/webauthn/index-vgb-u2f-attestation-0d0fcea.txt,	Top	line:	4022

			#user-consentReferenced	in:			#user-consentReferenced	in:
					*	1.	Introduction					*	1.	Introduction

			#user-verificationReferenced	in:			#user-verificationReferenced	in:
					*	1.	Introduction					*	1.	Introduction
					*	3.	Terminology	(2)	(3)	(4)	(5)					*	3.	Terminology	(2)	(3)	(4)	(5)

			#webauthn-clientReferenced	in:			#webauthn-clientReferenced	in:
					*	3.	Terminology	(2)					*	3.	Terminology	(2)
					*	5.2.	Signature	Format					*	5.2.	Signature	Format

			#web-authentication-apiReferenced	in:			#web-authentication-apiReferenced	in:
					*	1.	Introduction	(2)	(3)					*	1.	Introduction	(2)	(3)
					*	3.	Terminology	(2)					*	3.	Terminology	(2)

			#webauthenticationReferenced	in:			#webauthenticationReferenced	in:
					*	4.	Web	Authentication	API					*	4.	Web	Authentication	API
					*	4.1.	WebAuthentication	Interface					*	4.1.	WebAuthentication	Interface

			#dom-webauthentication-makecredential-accountinformation-cryptoparamete			#dom-webauthentication-makecredential-accountinformation-cryptoparamete
			rs-attestationchallenge-options-accountinformationReferenced	in:			rs-attestationchallenge-options-accountinformationReferenced	in:
					*	4.1.1.	Create	a	new	credential	(makeCredential()	method)	(2)	(3)					*	4.1.1.	Create	a	new	credential	(makeCredential()	method)	(2)	(3)

			#dom-webauthentication-makecredential-accountinformation-cryptoparamete			#dom-webauthentication-makecredential-accountinformation-cryptoparamete
			rs-attestationchallenge-options-cryptoparametersReferenced	in:			rs-attestationchallenge-options-cryptoparametersReferenced	in:
					*	4.1.1.	Create	a	new	credential	(makeCredential()	method)	(2)	(3)					*	4.1.1.	Create	a	new	credential	(makeCredential()	method)	(2)	(3)
							(4)	(5)							(4)	(5)

			#dom-webauthentication-makecredential-accountinformation-cryptoparamete			#dom-webauthentication-makecredential-accountinformation-cryptoparamete
			rs-attestationchallenge-options-attestationchallengeReferenced	in:			rs-attestationchallenge-options-attestationchallengeReferenced	in:
					*	4.1.1.	Create	a	new	credential	(makeCredential()	method)					*	4.1.1.	Create	a	new	credential	(makeCredential()	method)

			#dom-webauthentication-makecredential-accountinformation-cryptoparamete			#dom-webauthentication-makecredential-accountinformation-cryptoparamete
			rs-attestationchallenge-options-optionsReferenced	in:			rs-attestationchallenge-options-optionsReferenced	in:
					*	4.1.1.	Create	a	new	credential	(makeCredential()	method)	(2)	(3)					*	4.1.1.	Create	a	new	credential	(makeCredential()	method)	(2)	(3)
							(4)	(5)	(6)	(7)							(4)	(5)	(6)	(7)

			#dom-webauthentication-getassertion-assertionchallenge-options-assertio			#dom-webauthentication-getassertion-assertionchallenge-options-assertio
			nchallengeReferenced	in:			nchallengeReferenced	in:
					*	4.1.2.	Use	an	existing	credential	(getAssertion()	method)					*	4.1.2.	Use	an	existing	credential	(getAssertion()	method)

			#dom-webauthentication-getassertion-assertionchallenge-options-optionsR			#dom-webauthentication-getassertion-assertionchallenge-options-optionsR
			eferenced	in:			eferenced	in:
					*	4.1.2.	Use	an	existing	credential	(getAssertion()	method)	(2)	(3)					*	4.1.2.	Use	an	existing	credential	(getAssertion()	method)	(2)	(3)
							(4)	(5)							(4)	(5)

			#dom-webauthentication-makecredentialReferenced	in:			#dom-webauthentication-makecredentialReferenced	in:
					*	1.	Introduction					*	1.	Introduction
					*	4.1.	WebAuthentication	Interface					*	4.1.	WebAuthentication	Interface
					*	4.9.4.	Credential	Descriptor	(dictionary					*	4.9.4.	Credential	Descriptor	(dictionary
							ScopedCredentialDescriptor)							ScopedCredentialDescriptor)
					*	6.	Relying	Party	Operations					*	6.	Relying	Party	Operations
					*	6.1.	Registering	a	new	credential	(2)					*	6.1.	Registering	a	new	credential	(2)
					*	8.	WebAuthn	Extensions	(2)					*	8.	WebAuthn	Extensions	(2)
					*	8.2.	Defining	extensions					*	8.2.	Defining	extensions
					*	8.3.	Extending	request	parameters	(2)					*	8.3.	Extending	request	parameters	(2)
					*	9.3.	Authenticator	Selection	Extension					*	9.3.	Authenticator	Selection	Extension

			#dom-webauthentication-getassertionReferenced	in:			#dom-webauthentication-getassertionReferenced	in:
					*	1.	Introduction					*	1.	Introduction
					*	3.	Terminology					*	3.	Terminology

/Users/jehodges/Documents/work/standards/W3C/webauthn/index-vgb-u2f-attestation-dc90eab.txt,	Top	line:	4011

			#user-consentReferenced	in:			#user-consentReferenced	in:
					*	1.	Introduction					*	1.	Introduction

			#user-verificationReferenced	in:			#user-verificationReferenced	in:
					*	1.	Introduction					*	1.	Introduction
					*	3.	Terminology	(2)	(3)	(4)	(5)					*	3.	Terminology	(2)	(3)	(4)	(5)

			#webauthn-clientReferenced	in:			#webauthn-clientReferenced	in:
					*	3.	Terminology	(2)					*	3.	Terminology	(2)
					*	5.2.	Signature	Format					*	5.2.	Signature	Format

			#web-authentication-apiReferenced	in:			#web-authentication-apiReferenced	in:
					*	1.	Introduction	(2)	(3)					*	1.	Introduction	(2)	(3)
					*	3.	Terminology	(2)					*	3.	Terminology	(2)

			#webauthenticationReferenced	in:			#webauthenticationReferenced	in:
					*	4.	Web	Authentication	API					*	4.	Web	Authentication	API
					*	4.1.	WebAuthentication	Interface					*	4.1.	WebAuthentication	Interface

			#dom-webauthentication-makecredential-accountinformation-cryptoparamete			#dom-webauthentication-makecredential-accountinformation-cryptoparamete
			rs-attestationchallenge-options-accountinformationReferenced	in:			rs-attestationchallenge-options-accountinformationReferenced	in:
					*	4.1.1.	Create	a	new	credential	(makeCredential()	method)	(2)	(3)					*	4.1.1.	Create	a	new	credential	(makeCredential()	method)	(2)	(3)

			#dom-webauthentication-makecredential-accountinformation-cryptoparamete			#dom-webauthentication-makecredential-accountinformation-cryptoparamete
			rs-attestationchallenge-options-cryptoparametersReferenced	in:			rs-attestationchallenge-options-cryptoparametersReferenced	in:
					*	4.1.1.	Create	a	new	credential	(makeCredential()	method)	(2)	(3)					*	4.1.1.	Create	a	new	credential	(makeCredential()	method)	(2)	(3)
							(4)	(5)							(4)	(5)

			#dom-webauthentication-makecredential-accountinformation-cryptoparamete			#dom-webauthentication-makecredential-accountinformation-cryptoparamete
			rs-attestationchallenge-options-attestationchallengeReferenced	in:			rs-attestationchallenge-options-attestationchallengeReferenced	in:
					*	4.1.1.	Create	a	new	credential	(makeCredential()	method)					*	4.1.1.	Create	a	new	credential	(makeCredential()	method)

			#dom-webauthentication-makecredential-accountinformation-cryptoparamete			#dom-webauthentication-makecredential-accountinformation-cryptoparamete
			rs-attestationchallenge-options-optionsReferenced	in:			rs-attestationchallenge-options-optionsReferenced	in:
					*	4.1.1.	Create	a	new	credential	(makeCredential()	method)	(2)	(3)					*	4.1.1.	Create	a	new	credential	(makeCredential()	method)	(2)	(3)
							(4)	(5)	(6)	(7)							(4)	(5)	(6)	(7)

			#dom-webauthentication-getassertion-assertionchallenge-options-assertio			#dom-webauthentication-getassertion-assertionchallenge-options-assertio
			nchallengeReferenced	in:			nchallengeReferenced	in:
					*	4.1.2.	Use	an	existing	credential	(getAssertion()	method)					*	4.1.2.	Use	an	existing	credential	(getAssertion()	method)

			#dom-webauthentication-getassertion-assertionchallenge-options-optionsR			#dom-webauthentication-getassertion-assertionchallenge-options-optionsR
			eferenced	in:			eferenced	in:
					*	4.1.2.	Use	an	existing	credential	(getAssertion()	method)	(2)	(3)					*	4.1.2.	Use	an	existing	credential	(getAssertion()	method)	(2)	(3)
							(4)	(5)							(4)	(5)

			#dom-webauthentication-makecredentialReferenced	in:			#dom-webauthentication-makecredentialReferenced	in:
					*	1.	Introduction					*	1.	Introduction
					*	4.1.	WebAuthentication	Interface					*	4.1.	WebAuthentication	Interface
					*	4.9.4.	Credential	Descriptor	(dictionary					*	4.9.4.	Credential	Descriptor	(dictionary
							ScopedCredentialDescriptor)							ScopedCredentialDescriptor)
					*	6.	Relying	Party	Operations					*	6.	Relying	Party	Operations
					*	6.1.	Registering	a	new	credential	(2)					*	6.1.	Registering	a	new	credential	(2)
					*	8.	WebAuthn	Extensions	(2)					*	8.	WebAuthn	Extensions	(2)
					*	8.2.	Defining	extensions					*	8.2.	Defining	extensions
					*	8.3.	Extending	request	parameters	(2)					*	8.3.	Extending	request	parameters	(2)
					*	9.3.	Authenticator	Selection	Extension					*	9.3.	Authenticator	Selection	Extension

			#dom-webauthentication-getassertionReferenced	in:			#dom-webauthentication-getassertionReferenced	in:
					*	1.	Introduction					*	1.	Introduction
					*	3.	Terminology					*	3.	Terminology

66/72



/Users/jehodges/Documents/work/standards/W3C/webauthn/index-vgb-u2f-attestation-0d0fcea.txt,	Top	line:	4084

					*	4.1.	WebAuthentication	Interface					*	4.1.	WebAuthentication	Interface
					*	4.1.1.	Create	a	new	credential	(makeCredential()	method)	(2)					*	4.1.1.	Create	a	new	credential	(makeCredential()	method)	(2)
					*	4.8.	Authentication	Assertion	Extensions	(dictionary					*	4.8.	Authentication	Assertion	Extensions	(dictionary
							AuthenticationExtensions)							AuthenticationExtensions)
					*	4.9.4.	Credential	Descriptor	(dictionary					*	4.9.4.	Credential	Descriptor	(dictionary
							ScopedCredentialDescriptor)							ScopedCredentialDescriptor)
					*	6.	Relying	Party	Operations					*	6.	Relying	Party	Operations
					*	8.	WebAuthn	Extensions	(2)					*	8.	WebAuthn	Extensions	(2)
					*	8.2.	Defining	extensions					*	8.2.	Defining	extensions
					*	8.3.	Extending	request	parameters	(2)					*	8.3.	Extending	request	parameters	(2)
					*	9.1.	FIDO	AppId					*	9.1.	FIDO	AppId

			#scopedcredentialinfoReferenced	in:			#scopedcredentialinfoReferenced	in:
					*	4.1.	WebAuthentication	Interface					*	4.1.	WebAuthentication	Interface
					*	4.1.1.	Create	a	new	credential	(makeCredential()	method)	(2)					*	4.1.1.	Create	a	new	credential	(makeCredential()	method)	(2)
					*	4.2.	Information	about	Scoped	Credential	(interface					*	4.2.	Information	about	Scoped	Credential	(interface
							ScopedCredentialInfo)							ScopedCredentialInfo)
					*	6.	Relying	Party	Operations					*	6.	Relying	Party	Operations
					*	6.1.	Registering	a	new	credential	(2)	(3)					*	6.1.	Registering	a	new	credential	(2)	(3)

			#dom-scopedcredentialinfo-clientdataReferenced	in:			#dom-scopedcredentialinfo-clientdataReferenced	in:
					*	6.1.	Registering	a	new	credential	(2)					*	6.1.	Registering	a	new	credential	(2)

			#dom-scopedcredentialinfo-attestationobjectReferenced	in:			#dom-scopedcredentialinfo-attestationobjectReferenced	in:
					*	6.1.	Registering	a	new	credential					*	6.1.	Registering	a	new	credential

			#dictdef-accountReferenced	in:			#dictdef-accountReferenced	in:
					*	4.1.	WebAuthentication	Interface					*	4.1.	WebAuthentication	Interface
					*	4.3.	User	Account	Information	(dictionary	Account)					*	4.3.	User	Account	Information	(dictionary	Account)
					*	5.1.1.	The	authenticatorMakeCredential	operation					*	5.1.1.	The	authenticatorMakeCredential	operation

			#dom-account-idReferenced	in:			#dom-account-idReferenced	in:
					*	4.1.1.	Create	a	new	credential	(makeCredential()	method)					*	4.1.1.	Create	a	new	credential	(makeCredential()	method)
					*	4.3.	User	Account	Information	(dictionary	Account)					*	4.3.	User	Account	Information	(dictionary	Account)
					*	5.1.1.	The	authenticatorMakeCredential	operation	(2)					*	5.1.1.	The	authenticatorMakeCredential	operation	(2)

			#dictdef-scopedcredentialparametersReferenced	in:			#dictdef-scopedcredentialparametersReferenced	in:
					*	4.1.	WebAuthentication	Interface					*	4.1.	WebAuthentication	Interface
					*	4.1.1.	Create	a	new	credential	(makeCredential()	method)					*	4.1.1.	Create	a	new	credential	(makeCredential()	method)
					*	4.4.	Parameters	for	Credential	Generation	(dictionary					*	4.4.	Parameters	for	Credential	Generation	(dictionary
							ScopedCredentialParameters)							ScopedCredentialParameters)

			#dictdef-scopedcredentialoptionsReferenced	in:			#dictdef-scopedcredentialoptionsReferenced	in:
					*	4.1.	WebAuthentication	Interface					*	4.1.	WebAuthentication	Interface
					*	4.5.	Additional	options	for	Credential	Generation	(dictionary					*	4.5.	Additional	options	for	Credential	Generation	(dictionary
							ScopedCredentialOptions)							ScopedCredentialOptions)

			#dom-scopedcredentialoptions-timeoutsecondsReferenced	in:			#dom-scopedcredentialoptions-timeoutsecondsReferenced	in:
					*	4.1.1.	Create	a	new	credential	(makeCredential()	method)	(2)					*	4.1.1.	Create	a	new	credential	(makeCredential()	method)	(2)

			#dom-scopedcredentialoptions-rpidReferenced	in:			#dom-scopedcredentialoptions-rpidReferenced	in:
					*	4.1.1.	Create	a	new	credential	(makeCredential()	method)	(2)	(3)					*	4.1.1.	Create	a	new	credential	(makeCredential()	method)	(2)	(3)

			#dom-scopedcredentialoptions-excludelistReferenced	in:			#dom-scopedcredentialoptions-excludelistReferenced	in:
					*	4.1.1.	Create	a	new	credential	(makeCredential()	method)	(2)	(3)					*	4.1.1.	Create	a	new	credential	(makeCredential()	method)	(2)	(3)

			#dom-scopedcredentialoptions-attachmentReferenced	in:			#dom-scopedcredentialoptions-attachmentReferenced	in:
					*	4.1.1.	Create	a	new	credential	(makeCredential()	method)	(2)					*	4.1.1.	Create	a	new	credential	(makeCredential()	method)	(2)

			#dom-scopedcredentialoptions-extensionsReferenced	in:			#dom-scopedcredentialoptions-extensionsReferenced	in:
					*	4.1.1.	Create	a	new	credential	(makeCredential()	method)					*	4.1.1.	Create	a	new	credential	(makeCredential()	method)
					*	8.3.	Extending	request	parameters					*	8.3.	Extending	request	parameters

/Users/jehodges/Documents/work/standards/W3C/webauthn/index-vgb-u2f-attestation-dc90eab.txt,	Top	line:	4073

					*	4.1.	WebAuthentication	Interface					*	4.1.	WebAuthentication	Interface
					*	4.1.1.	Create	a	new	credential	(makeCredential()	method)	(2)					*	4.1.1.	Create	a	new	credential	(makeCredential()	method)	(2)
					*	4.8.	Authentication	Assertion	Extensions	(dictionary					*	4.8.	Authentication	Assertion	Extensions	(dictionary
							AuthenticationExtensions)							AuthenticationExtensions)
					*	4.9.4.	Credential	Descriptor	(dictionary					*	4.9.4.	Credential	Descriptor	(dictionary
							ScopedCredentialDescriptor)							ScopedCredentialDescriptor)
					*	6.	Relying	Party	Operations					*	6.	Relying	Party	Operations
					*	8.	WebAuthn	Extensions	(2)					*	8.	WebAuthn	Extensions	(2)
					*	8.2.	Defining	extensions					*	8.2.	Defining	extensions
					*	8.3.	Extending	request	parameters	(2)					*	8.3.	Extending	request	parameters	(2)
					*	9.1.	FIDO	AppId					*	9.1.	FIDO	AppId

			#scopedcredentialinfoReferenced	in:			#scopedcredentialinfoReferenced	in:
					*	4.1.	WebAuthentication	Interface					*	4.1.	WebAuthentication	Interface
					*	4.1.1.	Create	a	new	credential	(makeCredential()	method)	(2)					*	4.1.1.	Create	a	new	credential	(makeCredential()	method)	(2)
					*	4.2.	Information	about	Scoped	Credential	(interface					*	4.2.	Information	about	Scoped	Credential	(interface
							ScopedCredentialInfo)							ScopedCredentialInfo)
					*	6.	Relying	Party	Operations					*	6.	Relying	Party	Operations
					*	6.1.	Registering	a	new	credential	(2)	(3)					*	6.1.	Registering	a	new	credential	(2)	(3)

			#dom-scopedcredentialinfo-clientdataReferenced	in:			#dom-scopedcredentialinfo-clientdataReferenced	in:
					*	6.1.	Registering	a	new	credential	(2)					*	6.1.	Registering	a	new	credential	(2)

			#dom-scopedcredentialinfo-attestationobjectReferenced	in:			#dom-scopedcredentialinfo-attestationobjectReferenced	in:
					*	6.1.	Registering	a	new	credential					*	6.1.	Registering	a	new	credential

			#dictdef-accountReferenced	in:			#dictdef-accountReferenced	in:
					*	4.1.	WebAuthentication	Interface					*	4.1.	WebAuthentication	Interface
					*	4.3.	User	Account	Information	(dictionary	Account)					*	4.3.	User	Account	Information	(dictionary	Account)
					*	5.1.1.	The	authenticatorMakeCredential	operation					*	5.1.1.	The	authenticatorMakeCredential	operation

			#dom-account-idReferenced	in:			#dom-account-idReferenced	in:
					*	4.1.1.	Create	a	new	credential	(makeCredential()	method)					*	4.1.1.	Create	a	new	credential	(makeCredential()	method)
					*	4.3.	User	Account	Information	(dictionary	Account)					*	4.3.	User	Account	Information	(dictionary	Account)
					*	5.1.1.	The	authenticatorMakeCredential	operation	(2)					*	5.1.1.	The	authenticatorMakeCredential	operation	(2)

			#dictdef-scopedcredentialparametersReferenced	in:			#dictdef-scopedcredentialparametersReferenced	in:
					*	4.1.	WebAuthentication	Interface					*	4.1.	WebAuthentication	Interface
					*	4.1.1.	Create	a	new	credential	(makeCredential()	method)					*	4.1.1.	Create	a	new	credential	(makeCredential()	method)
					*	4.4.	Parameters	for	Credential	Generation	(dictionary					*	4.4.	Parameters	for	Credential	Generation	(dictionary
							ScopedCredentialParameters)							ScopedCredentialParameters)

			#dictdef-scopedcredentialoptionsReferenced	in:			#dictdef-scopedcredentialoptionsReferenced	in:
					*	4.1.	WebAuthentication	Interface					*	4.1.	WebAuthentication	Interface
					*	4.5.	Additional	options	for	Credential	Generation	(dictionary					*	4.5.	Additional	options	for	Credential	Generation	(dictionary
							ScopedCredentialOptions)							ScopedCredentialOptions)

			#dom-scopedcredentialoptions-timeoutsecondsReferenced	in:			#dom-scopedcredentialoptions-timeoutsecondsReferenced	in:
					*	4.1.1.	Create	a	new	credential	(makeCredential()	method)	(2)					*	4.1.1.	Create	a	new	credential	(makeCredential()	method)	(2)

			#dom-scopedcredentialoptions-rpidReferenced	in:			#dom-scopedcredentialoptions-rpidReferenced	in:
					*	4.1.1.	Create	a	new	credential	(makeCredential()	method)	(2)	(3)					*	4.1.1.	Create	a	new	credential	(makeCredential()	method)	(2)	(3)

			#dom-scopedcredentialoptions-excludelistReferenced	in:			#dom-scopedcredentialoptions-excludelistReferenced	in:
					*	4.1.1.	Create	a	new	credential	(makeCredential()	method)	(2)	(3)					*	4.1.1.	Create	a	new	credential	(makeCredential()	method)	(2)	(3)

			#dom-scopedcredentialoptions-attachmentReferenced	in:			#dom-scopedcredentialoptions-attachmentReferenced	in:
					*	4.1.1.	Create	a	new	credential	(makeCredential()	method)	(2)					*	4.1.1.	Create	a	new	credential	(makeCredential()	method)	(2)

			#dom-scopedcredentialoptions-extensionsReferenced	in:			#dom-scopedcredentialoptions-extensionsReferenced	in:
					*	4.1.1.	Create	a	new	credential	(makeCredential()	method)					*	4.1.1.	Create	a	new	credential	(makeCredential()	method)
					*	8.3.	Extending	request	parameters					*	8.3.	Extending	request	parameters

67/72



/Users/jehodges/Documents/work/standards/W3C/webauthn/index-vgb-u2f-attestation-0d0fcea.txt,	Top	line:	4146

			#enumdef-attachmentReferenced	in:			#enumdef-attachmentReferenced	in:
					*	4.5.	Additional	options	for	Credential	Generation	(dictionary					*	4.5.	Additional	options	for	Credential	Generation	(dictionary
							ScopedCredentialOptions)							ScopedCredentialOptions)
					*	4.5.1.	Credential	Attachment	enumeration	(enum	Attachment)					*	4.5.1.	Credential	Attachment	enumeration	(enum	Attachment)

			#attachment-platform-authenticatorsReferenced	in:			#attachment-platform-authenticatorsReferenced	in:
					*	4.5.1.	Credential	Attachment	enumeration	(enum	Attachment)	(2)					*	4.5.1.	Credential	Attachment	enumeration	(enum	Attachment)	(2)

			#attachment-roaming-authenticatorsReferenced	in:			#attachment-roaming-authenticatorsReferenced	in:
					*	1.1.3.	Other	use	cases	and	configurations					*	1.1.3.	Other	use	cases	and	configurations
					*	4.5.1.	Credential	Attachment	enumeration	(enum	Attachment)	(2)					*	4.5.1.	Credential	Attachment	enumeration	(enum	Attachment)	(2)

			#attachment-platform-attachmentReferenced	in:			#attachment-platform-attachmentReferenced	in:
					*	4.5.1.	Credential	Attachment	enumeration	(enum	Attachment)					*	4.5.1.	Credential	Attachment	enumeration	(enum	Attachment)

			#attachment-cross-platform-attachedReferenced	in:			#attachment-cross-platform-attachedReferenced	in:
					*	4.5.1.	Credential	Attachment	enumeration	(enum	Attachment)	(2)					*	4.5.1.	Credential	Attachment	enumeration	(enum	Attachment)	(2)

			#authenticationassertionReferenced	in:			#authenticationassertionReferenced	in:
					*	3.	Terminology					*	3.	Terminology
					*	4.1.	WebAuthentication	Interface					*	4.1.	WebAuthentication	Interface
					*	4.1.2.	Use	an	existing	credential	(getAssertion()	method)					*	4.1.2.	Use	an	existing	credential	(getAssertion()	method)
					*	4.6.	Web	Authentication	Assertion	(interface					*	4.6.	Web	Authentication	Assertion	(interface
							AuthenticationAssertion)							AuthenticationAssertion)
					*	6.	Relying	Party	Operations					*	6.	Relying	Party	Operations
					*	6.2.	Verifying	an	authentication	assertion	(2)					*	6.2.	Verifying	an	authentication	assertion	(2)

			#dom-authenticationassertion-credentialReferenced	in:			#dom-authenticationassertion-credentialReferenced	in:
					*	6.2.	Verifying	an	authentication	assertion					*	6.2.	Verifying	an	authentication	assertion

			#dom-authenticationassertion-clientdataReferenced	in:			#dom-authenticationassertion-clientdataReferenced	in:
					*	6.2.	Verifying	an	authentication	assertion					*	6.2.	Verifying	an	authentication	assertion

			#dom-authenticationassertion-authenticatordataReferenced	in:			#dom-authenticationassertion-authenticatordataReferenced	in:
					*	6.2.	Verifying	an	authentication	assertion					*	6.2.	Verifying	an	authentication	assertion

			#dom-authenticationassertion-signatureReferenced	in:			#dom-authenticationassertion-signatureReferenced	in:
					*	6.2.	Verifying	an	authentication	assertion					*	6.2.	Verifying	an	authentication	assertion

			#dictdef-assertionoptionsReferenced	in:			#dictdef-assertionoptionsReferenced	in:
					*	4.1.	WebAuthentication	Interface					*	4.1.	WebAuthentication	Interface
					*	4.7.	Additional	options	for	Assertion	Generation	(dictionary					*	4.7.	Additional	options	for	Assertion	Generation	(dictionary
							AssertionOptions)							AssertionOptions)

			#dom-assertionoptions-timeoutsecondsReferenced	in:			#dom-assertionoptions-timeoutsecondsReferenced	in:
					*	4.1.2.	Use	an	existing	credential	(getAssertion()	method)	(2)					*	4.1.2.	Use	an	existing	credential	(getAssertion()	method)	(2)

			#dom-assertionoptions-rpidReferenced	in:			#dom-assertionoptions-rpidReferenced	in:
					*	4.1.2.	Use	an	existing	credential	(getAssertion()	method)	(2)	(3)					*	4.1.2.	Use	an	existing	credential	(getAssertion()	method)	(2)	(3)
					*	9.1.	FIDO	AppId					*	9.1.	FIDO	AppId

			#dom-assertionoptions-allowlistReferenced	in:			#dom-assertionoptions-allowlistReferenced	in:
					*	4.1.1.	Create	a	new	credential	(makeCredential()	method)	(2)					*	4.1.1.	Create	a	new	credential	(makeCredential()	method)	(2)
					*	4.1.2.	Use	an	existing	credential	(getAssertion()	method)	(2)	(3)					*	4.1.2.	Use	an	existing	credential	(getAssertion()	method)	(2)	(3)

			#dom-assertionoptions-extensionsReferenced	in:			#dom-assertionoptions-extensionsReferenced	in:
					*	4.1.2.	Use	an	existing	credential	(getAssertion()	method)					*	4.1.2.	Use	an	existing	credential	(getAssertion()	method)

			#dictdef-authenticationextensionsReferenced	in:			#dictdef-authenticationextensionsReferenced	in:
					*	4.5.	Additional	options	for	Credential	Generation	(dictionary					*	4.5.	Additional	options	for	Credential	Generation	(dictionary
							ScopedCredentialOptions)							ScopedCredentialOptions)

/Users/jehodges/Documents/work/standards/W3C/webauthn/index-vgb-u2f-attestation-dc90eab.txt,	Top	line:	4135

			#enumdef-attachmentReferenced	in:			#enumdef-attachmentReferenced	in:
					*	4.5.	Additional	options	for	Credential	Generation	(dictionary					*	4.5.	Additional	options	for	Credential	Generation	(dictionary
							ScopedCredentialOptions)							ScopedCredentialOptions)
					*	4.5.1.	Credential	Attachment	enumeration	(enum	Attachment)					*	4.5.1.	Credential	Attachment	enumeration	(enum	Attachment)

			#attachment-platform-authenticatorsReferenced	in:			#attachment-platform-authenticatorsReferenced	in:
					*	4.5.1.	Credential	Attachment	enumeration	(enum	Attachment)	(2)					*	4.5.1.	Credential	Attachment	enumeration	(enum	Attachment)	(2)

			#attachment-roaming-authenticatorsReferenced	in:			#attachment-roaming-authenticatorsReferenced	in:
					*	1.1.3.	Other	use	cases	and	configurations					*	1.1.3.	Other	use	cases	and	configurations
					*	4.5.1.	Credential	Attachment	enumeration	(enum	Attachment)	(2)					*	4.5.1.	Credential	Attachment	enumeration	(enum	Attachment)	(2)

			#attachment-platform-attachmentReferenced	in:			#attachment-platform-attachmentReferenced	in:
					*	4.5.1.	Credential	Attachment	enumeration	(enum	Attachment)					*	4.5.1.	Credential	Attachment	enumeration	(enum	Attachment)

			#attachment-cross-platform-attachedReferenced	in:			#attachment-cross-platform-attachedReferenced	in:
					*	4.5.1.	Credential	Attachment	enumeration	(enum	Attachment)	(2)					*	4.5.1.	Credential	Attachment	enumeration	(enum	Attachment)	(2)

			#authenticationassertionReferenced	in:			#authenticationassertionReferenced	in:
					*	3.	Terminology					*	3.	Terminology
					*	4.1.	WebAuthentication	Interface					*	4.1.	WebAuthentication	Interface
					*	4.1.2.	Use	an	existing	credential	(getAssertion()	method)					*	4.1.2.	Use	an	existing	credential	(getAssertion()	method)
					*	4.6.	Web	Authentication	Assertion	(interface					*	4.6.	Web	Authentication	Assertion	(interface
							AuthenticationAssertion)							AuthenticationAssertion)
					*	6.	Relying	Party	Operations					*	6.	Relying	Party	Operations
					*	6.2.	Verifying	an	authentication	assertion	(2)					*	6.2.	Verifying	an	authentication	assertion	(2)

			#dom-authenticationassertion-credentialReferenced	in:			#dom-authenticationassertion-credentialReferenced	in:
					*	6.2.	Verifying	an	authentication	assertion					*	6.2.	Verifying	an	authentication	assertion

			#dom-authenticationassertion-clientdataReferenced	in:			#dom-authenticationassertion-clientdataReferenced	in:
					*	6.2.	Verifying	an	authentication	assertion					*	6.2.	Verifying	an	authentication	assertion

			#dom-authenticationassertion-authenticatordataReferenced	in:			#dom-authenticationassertion-authenticatordataReferenced	in:
					*	6.2.	Verifying	an	authentication	assertion					*	6.2.	Verifying	an	authentication	assertion

			#dom-authenticationassertion-signatureReferenced	in:			#dom-authenticationassertion-signatureReferenced	in:
					*	6.2.	Verifying	an	authentication	assertion					*	6.2.	Verifying	an	authentication	assertion

			#dictdef-assertionoptionsReferenced	in:			#dictdef-assertionoptionsReferenced	in:
					*	4.1.	WebAuthentication	Interface					*	4.1.	WebAuthentication	Interface
					*	4.7.	Additional	options	for	Assertion	Generation	(dictionary					*	4.7.	Additional	options	for	Assertion	Generation	(dictionary
							AssertionOptions)							AssertionOptions)

			#dom-assertionoptions-timeoutsecondsReferenced	in:			#dom-assertionoptions-timeoutsecondsReferenced	in:
					*	4.1.2.	Use	an	existing	credential	(getAssertion()	method)	(2)					*	4.1.2.	Use	an	existing	credential	(getAssertion()	method)	(2)

			#dom-assertionoptions-rpidReferenced	in:			#dom-assertionoptions-rpidReferenced	in:
					*	4.1.2.	Use	an	existing	credential	(getAssertion()	method)	(2)	(3)					*	4.1.2.	Use	an	existing	credential	(getAssertion()	method)	(2)	(3)
					*	9.1.	FIDO	AppId					*	9.1.	FIDO	AppId

			#dom-assertionoptions-allowlistReferenced	in:			#dom-assertionoptions-allowlistReferenced	in:
					*	4.1.1.	Create	a	new	credential	(makeCredential()	method)	(2)					*	4.1.1.	Create	a	new	credential	(makeCredential()	method)	(2)
					*	4.1.2.	Use	an	existing	credential	(getAssertion()	method)	(2)	(3)					*	4.1.2.	Use	an	existing	credential	(getAssertion()	method)	(2)	(3)

			#dom-assertionoptions-extensionsReferenced	in:			#dom-assertionoptions-extensionsReferenced	in:
					*	4.1.2.	Use	an	existing	credential	(getAssertion()	method)					*	4.1.2.	Use	an	existing	credential	(getAssertion()	method)

			#dictdef-authenticationextensionsReferenced	in:			#dictdef-authenticationextensionsReferenced	in:
					*	4.5.	Additional	options	for	Credential	Generation	(dictionary					*	4.5.	Additional	options	for	Credential	Generation	(dictionary
							ScopedCredentialOptions)							ScopedCredentialOptions)

68/72



/Users/jehodges/Documents/work/standards/W3C/webauthn/index-vgb-u2f-attestation-0d0fcea.txt,	Top	line:	4208

					*	4.7.	Additional	options	for	Assertion	Generation	(dictionary					*	4.7.	Additional	options	for	Assertion	Generation	(dictionary
							AssertionOptions)							AssertionOptions)
					*	4.8.	Authentication	Assertion	Extensions	(dictionary					*	4.8.	Authentication	Assertion	Extensions	(dictionary
							AuthenticationExtensions)							AuthenticationExtensions)
					*	4.9.1.	Client	data	used	in	WebAuthn	signatures	(dictionary					*	4.9.1.	Client	data	used	in	WebAuthn	signatures	(dictionary
							ClientData)							ClientData)

			#dictdef-clientdataReferenced	in:			#dictdef-clientdataReferenced	in:
					*	4.1.1.	Create	a	new	credential	(makeCredential()	method)					*	4.1.1.	Create	a	new	credential	(makeCredential()	method)
					*	4.1.2.	Use	an	existing	credential	(getAssertion()	method)					*	4.1.2.	Use	an	existing	credential	(getAssertion()	method)
					*	4.9.1.	Client	data	used	in	WebAuthn	signatures	(dictionary					*	4.9.1.	Client	data	used	in	WebAuthn	signatures	(dictionary
							ClientData)	(2)							ClientData)	(2)
					*	5.1.1.	The	authenticatorMakeCredential	operation					*	5.1.1.	The	authenticatorMakeCredential	operation
					*	5.1.2.	The	authenticatorGetAssertion	operation					*	5.1.2.	The	authenticatorGetAssertion	operation
					*	5.2.	Signature	Format					*	5.2.	Signature	Format
					*	5.2.1.	Authenticator	data					*	5.2.1.	Authenticator	data
					*	5.2.4.	Verifying	a	signature	(2)	(3)	(4)	(5)	(6)					*	5.2.4.	Verifying	a	signature	(2)	(3)	(4)	(5)	(6)
					*	6.1.	Registering	a	new	credential	(2)	(3)	(4)	(5)	(6)					*	6.1.	Registering	a	new	credential	(2)	(3)	(4)	(5)	(6)
					*	7.2.	Packed	Attestation	Statement	Format					*	7.2.	Packed	Attestation	Statement	Format
					*	8.	WebAuthn	Extensions	(2)					*	8.	WebAuthn	Extensions	(2)
					*	8.2.	Defining	extensions	(2)					*	8.2.	Defining	extensions	(2)
					*	8.4.	Extending	client	processing	(2)					*	8.4.	Extending	client	processing	(2)

			#dom-clientdata-challengeReferenced	in:			#dom-clientdata-challengeReferenced	in:
					*	5.2.4.	Verifying	a	signature					*	5.2.4.	Verifying	a	signature
					*	6.1.	Registering	a	new	credential					*	6.1.	Registering	a	new	credential

			#dom-clientdata-originReferenced	in:			#dom-clientdata-originReferenced	in:
					*	5.2.4.	Verifying	a	signature					*	5.2.4.	Verifying	a	signature
					*	6.1.	Registering	a	new	credential					*	6.1.	Registering	a	new	credential

			#dom-clientdata-hashalgReferenced	in:			#dom-clientdata-hashalgReferenced	in:
					*	4.1.1.	Create	a	new	credential	(makeCredential()	method)					*	4.1.1.	Create	a	new	credential	(makeCredential()	method)
					*	4.1.2.	Use	an	existing	credential	(getAssertion()	method)					*	4.1.2.	Use	an	existing	credential	(getAssertion()	method)
					*	5.2.4.	Verifying	a	signature					*	5.2.4.	Verifying	a	signature
					*	6.1.	Registering	a	new	credential					*	6.1.	Registering	a	new	credential

			#dom-clientdata-tokenbindingReferenced	in:			#dom-clientdata-tokenbindingReferenced	in:
					*	5.2.4.	Verifying	a	signature					*	5.2.4.	Verifying	a	signature
					*	6.1.	Registering	a	new	credential					*	6.1.	Registering	a	new	credential

			#dom-clientdata-extensionsReferenced	in:			#dom-clientdata-extensionsReferenced	in:
					*	5.2.4.	Verifying	a	signature					*	5.2.4.	Verifying	a	signature
					*	6.1.	Registering	a	new	credential					*	6.1.	Registering	a	new	credential
					*	8.4.	Extending	client	processing					*	8.4.	Extending	client	processing

			#clientdata-hashalgReferenced	in:			#clientdata-hashalgReferenced	in:
					*	4.9.1.	Client	data	used	in	WebAuthn	signatures	(dictionary					*	4.9.1.	Client	data	used	in	WebAuthn	signatures	(dictionary
							ClientData)							ClientData)

			#clientdatajsonReferenced	in:			#clientdatajsonReferenced	in:
					*	4.1.1.	Create	a	new	credential	(makeCredential()	method)	(2)					*	4.1.1.	Create	a	new	credential	(makeCredential()	method)	(2)
					*	4.1.2.	Use	an	existing	credential	(getAssertion()	method)	(2)					*	4.1.2.	Use	an	existing	credential	(getAssertion()	method)	(2)
					*	4.2.	Information	about	Scoped	Credential	(interface					*	4.2.	Information	about	Scoped	Credential	(interface
							ScopedCredentialInfo)							ScopedCredentialInfo)
					*	4.9.1.	Client	data	used	in	WebAuthn	signatures	(dictionary					*	4.9.1.	Client	data	used	in	WebAuthn	signatures	(dictionary
							ClientData)							ClientData)
					*	5.2.4.	Verifying	a	signature					*	5.2.4.	Verifying	a	signature

			#clientdatahashReferenced	in:			#clientdatahashReferenced	in:
					*	4.1.1.	Create	a	new	credential	(makeCredential()	method)	(2)					*	4.1.1.	Create	a	new	credential	(makeCredential()	method)	(2)
					*	4.1.2.	Use	an	existing	credential	(getAssertion()	method)	(2)					*	4.1.2.	Use	an	existing	credential	(getAssertion()	method)	(2)

/Users/jehodges/Documents/work/standards/W3C/webauthn/index-vgb-u2f-attestation-dc90eab.txt,	Top	line:	4197

					*	4.7.	Additional	options	for	Assertion	Generation	(dictionary					*	4.7.	Additional	options	for	Assertion	Generation	(dictionary
							AssertionOptions)							AssertionOptions)
					*	4.8.	Authentication	Assertion	Extensions	(dictionary					*	4.8.	Authentication	Assertion	Extensions	(dictionary
							AuthenticationExtensions)							AuthenticationExtensions)
					*	4.9.1.	Client	data	used	in	WebAuthn	signatures	(dictionary					*	4.9.1.	Client	data	used	in	WebAuthn	signatures	(dictionary
							ClientData)							ClientData)

			#dictdef-clientdataReferenced	in:			#dictdef-clientdataReferenced	in:
					*	4.1.1.	Create	a	new	credential	(makeCredential()	method)					*	4.1.1.	Create	a	new	credential	(makeCredential()	method)
					*	4.1.2.	Use	an	existing	credential	(getAssertion()	method)					*	4.1.2.	Use	an	existing	credential	(getAssertion()	method)
					*	4.9.1.	Client	data	used	in	WebAuthn	signatures	(dictionary					*	4.9.1.	Client	data	used	in	WebAuthn	signatures	(dictionary
							ClientData)	(2)							ClientData)	(2)
					*	5.1.1.	The	authenticatorMakeCredential	operation					*	5.1.1.	The	authenticatorMakeCredential	operation
					*	5.1.2.	The	authenticatorGetAssertion	operation					*	5.1.2.	The	authenticatorGetAssertion	operation
					*	5.2.	Signature	Format					*	5.2.	Signature	Format
					*	5.2.1.	Authenticator	data					*	5.2.1.	Authenticator	data
					*	5.2.4.	Verifying	a	signature	(2)	(3)	(4)	(5)	(6)					*	5.2.4.	Verifying	a	signature	(2)	(3)	(4)	(5)	(6)
					*	6.1.	Registering	a	new	credential	(2)	(3)	(4)	(5)	(6)					*	6.1.	Registering	a	new	credential	(2)	(3)	(4)	(5)	(6)

					*	8.	WebAuthn	Extensions	(2)					*	8.	WebAuthn	Extensions	(2)
					*	8.2.	Defining	extensions	(2)					*	8.2.	Defining	extensions	(2)
					*	8.4.	Extending	client	processing	(2)					*	8.4.	Extending	client	processing	(2)

			#dom-clientdata-challengeReferenced	in:			#dom-clientdata-challengeReferenced	in:
					*	5.2.4.	Verifying	a	signature					*	5.2.4.	Verifying	a	signature
					*	6.1.	Registering	a	new	credential					*	6.1.	Registering	a	new	credential

			#dom-clientdata-originReferenced	in:			#dom-clientdata-originReferenced	in:
					*	5.2.4.	Verifying	a	signature					*	5.2.4.	Verifying	a	signature
					*	6.1.	Registering	a	new	credential					*	6.1.	Registering	a	new	credential

			#dom-clientdata-hashalgReferenced	in:			#dom-clientdata-hashalgReferenced	in:
					*	4.1.1.	Create	a	new	credential	(makeCredential()	method)					*	4.1.1.	Create	a	new	credential	(makeCredential()	method)
					*	4.1.2.	Use	an	existing	credential	(getAssertion()	method)					*	4.1.2.	Use	an	existing	credential	(getAssertion()	method)
					*	5.2.4.	Verifying	a	signature					*	5.2.4.	Verifying	a	signature
					*	6.1.	Registering	a	new	credential					*	6.1.	Registering	a	new	credential

			#dom-clientdata-tokenbindingReferenced	in:			#dom-clientdata-tokenbindingReferenced	in:
					*	5.2.4.	Verifying	a	signature					*	5.2.4.	Verifying	a	signature
					*	6.1.	Registering	a	new	credential					*	6.1.	Registering	a	new	credential

			#dom-clientdata-extensionsReferenced	in:			#dom-clientdata-extensionsReferenced	in:
					*	5.2.4.	Verifying	a	signature					*	5.2.4.	Verifying	a	signature
					*	6.1.	Registering	a	new	credential					*	6.1.	Registering	a	new	credential
					*	8.4.	Extending	client	processing					*	8.4.	Extending	client	processing

			#clientdata-hashalgReferenced	in:			#clientdata-hashalgReferenced	in:
					*	4.9.1.	Client	data	used	in	WebAuthn	signatures	(dictionary					*	4.9.1.	Client	data	used	in	WebAuthn	signatures	(dictionary
							ClientData)							ClientData)

			#clientdatajsonReferenced	in:			#clientdatajsonReferenced	in:
					*	4.1.1.	Create	a	new	credential	(makeCredential()	method)	(2)					*	4.1.1.	Create	a	new	credential	(makeCredential()	method)	(2)
					*	4.1.2.	Use	an	existing	credential	(getAssertion()	method)	(2)					*	4.1.2.	Use	an	existing	credential	(getAssertion()	method)	(2)
					*	4.2.	Information	about	Scoped	Credential	(interface					*	4.2.	Information	about	Scoped	Credential	(interface
							ScopedCredentialInfo)							ScopedCredentialInfo)
					*	4.9.1.	Client	data	used	in	WebAuthn	signatures	(dictionary					*	4.9.1.	Client	data	used	in	WebAuthn	signatures	(dictionary
							ClientData)							ClientData)
					*	5.2.4.	Verifying	a	signature					*	5.2.4.	Verifying	a	signature

			#clientdatahashReferenced	in:			#clientdatahashReferenced	in:
					*	4.1.1.	Create	a	new	credential	(makeCredential()	method)	(2)					*	4.1.1.	Create	a	new	credential	(makeCredential()	method)	(2)
					*	4.1.2.	Use	an	existing	credential	(getAssertion()	method)	(2)					*	4.1.2.	Use	an	existing	credential	(getAssertion()	method)	(2)

69/72



/Users/jehodges/Documents/work/standards/W3C/webauthn/index-vgb-u2f-attestation-0d0fcea.txt,	Top	line:	4270

					*	4.2.	Information	about	Scoped	Credential	(interface					*	4.2.	Information	about	Scoped	Credential	(interface
							ScopedCredentialInfo)							ScopedCredentialInfo)
					*	4.9.1.	Client	data	used	in	WebAuthn	signatures	(dictionary					*	4.9.1.	Client	data	used	in	WebAuthn	signatures	(dictionary
							ClientData)							ClientData)
					*	5.1.1.	The	authenticatorMakeCredential	operation	(2)					*	5.1.1.	The	authenticatorMakeCredential	operation	(2)
					*	5.1.2.	The	authenticatorGetAssertion	operation	(2)					*	5.1.2.	The	authenticatorGetAssertion	operation	(2)
					*	5.2.	Signature	Format					*	5.2.	Signature	Format
					*	5.2.3.	Generating	a	signature	(2)	(3)					*	5.2.3.	Generating	a	signature	(2)	(3)
					*	5.2.4.	Verifying	a	signature	(2)					*	5.2.4.	Verifying	a	signature	(2)
					*	5.3.1.	Attestation	Statement	Formats	(2)					*	5.3.1.	Attestation	Statement	Formats	(2)
					*	5.3.3.	Generating	an	Attestation	Object					*	5.3.3.	Generating	an	Attestation	Object
					*	6.1.	Registering	a	new	credential	(2)					*	6.1.	Registering	a	new	credential	(2)
					*	7.2.	Packed	Attestation	Statement	Format	(2)	(3)	(4)	(5)	(6)					*	7.2.	Packed	Attestation	Statement	Format	(2)	(3)	(4)	(5)	(6)
					*	7.3.	TPM	Attestation	Statement	Format	(2)					*	7.3.	TPM	Attestation	Statement	Format	(2)
					*	7.4.	Android	Key	Attestation	Statement	Format	(2)					*	7.4.	Android	Key	Attestation	Statement	Format	(2)
					*	7.5.	Android	SafetyNet	Attestation	Statement	Format	(2)					*	7.5.	Android	SafetyNet	Attestation	Statement	Format	(2)
					*	7.6.	FIDO	U2F	Attestation	Statement	Format	(2)					*	7.6.	FIDO	U2F	Attestation	Statement	Format	(2)

			#enumdef-scopedcredentialtypeReferenced	in:			#enumdef-scopedcredentialtypeReferenced	in:
					*	4.1.1.	Create	a	new	credential	(makeCredential()	method)					*	4.1.1.	Create	a	new	credential	(makeCredential()	method)
					*	4.4.	Parameters	for	Credential	Generation	(dictionary					*	4.4.	Parameters	for	Credential	Generation	(dictionary
							ScopedCredentialParameters)							ScopedCredentialParameters)
					*	4.9.2.	Credential	Type	enumeration	(enum	ScopedCredentialType)					*	4.9.2.	Credential	Type	enumeration	(enum	ScopedCredentialType)
					*	4.9.3.	Unique	Identifier	for	Credential	(interface					*	4.9.3.	Unique	Identifier	for	Credential	(interface
							ScopedCredential)	(2)							ScopedCredential)	(2)
					*	4.9.4.	Credential	Descriptor	(dictionary					*	4.9.4.	Credential	Descriptor	(dictionary
							ScopedCredentialDescriptor)							ScopedCredentialDescriptor)
					*	5.1.1.	The	authenticatorMakeCredential	operation	(2)	(3)					*	5.1.1.	The	authenticatorMakeCredential	operation	(2)	(3)

			#scopedcredentialReferenced	in:			#scopedcredentialReferenced	in:
					*	4.6.	Web	Authentication	Assertion	(interface					*	4.6.	Web	Authentication	Assertion	(interface
							AuthenticationAssertion)							AuthenticationAssertion)
					*	4.9.3.	Unique	Identifier	for	Credential	(interface					*	4.9.3.	Unique	Identifier	for	Credential	(interface
							ScopedCredential)							ScopedCredential)
					*	4.9.4.	Credential	Descriptor	(dictionary					*	4.9.4.	Credential	Descriptor	(dictionary
							ScopedCredentialDescriptor)							ScopedCredentialDescriptor)
					*	5.1.1.	The	authenticatorMakeCredential	operation	(2)					*	5.1.1.	The	authenticatorMakeCredential	operation	(2)

			#dictdef-scopedcredentialdescriptorReferenced	in:			#dictdef-scopedcredentialdescriptorReferenced	in:
					*	4.5.	Additional	options	for	Credential	Generation	(dictionary					*	4.5.	Additional	options	for	Credential	Generation	(dictionary
							ScopedCredentialOptions)							ScopedCredentialOptions)
					*	4.7.	Additional	options	for	Assertion	Generation	(dictionary					*	4.7.	Additional	options	for	Assertion	Generation	(dictionary
							AssertionOptions)							AssertionOptions)
					*	4.9.4.	Credential	Descriptor	(dictionary					*	4.9.4.	Credential	Descriptor	(dictionary
							ScopedCredentialDescriptor)							ScopedCredentialDescriptor)

			#enumdef-transportReferenced	in:			#enumdef-transportReferenced	in:
					*	4.9.4.	Credential	Descriptor	(dictionary					*	4.9.4.	Credential	Descriptor	(dictionary
							ScopedCredentialDescriptor)							ScopedCredentialDescriptor)

			#authenticatormakecredentialReferenced	in:			#authenticatormakecredentialReferenced	in:
					*	3.	Terminology	(2)					*	3.	Terminology	(2)
					*	4.1.1.	Create	a	new	credential	(makeCredential()	method)					*	4.1.1.	Create	a	new	credential	(makeCredential()	method)
					*	5.1.3.	The	authenticatorCancel	operation	(2)					*	5.1.3.	The	authenticatorCancel	operation	(2)
					*	8.	WebAuthn	Extensions					*	8.	WebAuthn	Extensions
					*	8.2.	Defining	extensions					*	8.2.	Defining	extensions

			#authenticatorgetassertionReferenced	in:			#authenticatorgetassertionReferenced	in:
					*	3.	Terminology	(2)					*	3.	Terminology	(2)
					*	4.1.2.	Use	an	existing	credential	(getAssertion()	method)					*	4.1.2.	Use	an	existing	credential	(getAssertion()	method)
					*	5.1.3.	The	authenticatorCancel	operation	(2)					*	5.1.3.	The	authenticatorCancel	operation	(2)
					*	5.2.1.	Authenticator	data					*	5.2.1.	Authenticator	data

/Users/jehodges/Documents/work/standards/W3C/webauthn/index-vgb-u2f-attestation-dc90eab.txt,	Top	line:	4258

					*	4.2.	Information	about	Scoped	Credential	(interface					*	4.2.	Information	about	Scoped	Credential	(interface
							ScopedCredentialInfo)							ScopedCredentialInfo)
					*	4.9.1.	Client	data	used	in	WebAuthn	signatures	(dictionary					*	4.9.1.	Client	data	used	in	WebAuthn	signatures	(dictionary
							ClientData)							ClientData)
					*	5.1.1.	The	authenticatorMakeCredential	operation	(2)					*	5.1.1.	The	authenticatorMakeCredential	operation	(2)
					*	5.1.2.	The	authenticatorGetAssertion	operation	(2)					*	5.1.2.	The	authenticatorGetAssertion	operation	(2)
					*	5.2.	Signature	Format					*	5.2.	Signature	Format
					*	5.2.3.	Generating	a	signature	(2)	(3)					*	5.2.3.	Generating	a	signature	(2)	(3)
					*	5.2.4.	Verifying	a	signature	(2)					*	5.2.4.	Verifying	a	signature	(2)
					*	5.3.1.	Attestation	Statement	Formats	(2)					*	5.3.1.	Attestation	Statement	Formats	(2)
					*	5.3.3.	Generating	an	Attestation	Object					*	5.3.3.	Generating	an	Attestation	Object
					*	6.1.	Registering	a	new	credential	(2)					*	6.1.	Registering	a	new	credential	(2)
					*	7.2.	Packed	Attestation	Statement	Format	(2)	(3)	(4)	(5)	(6)					*	7.2.	Packed	Attestation	Statement	Format	(2)	(3)	(4)	(5)	(6)
					*	7.3.	TPM	Attestation	Statement	Format	(2)					*	7.3.	TPM	Attestation	Statement	Format	(2)
					*	7.4.	Android	Key	Attestation	Statement	Format	(2)					*	7.4.	Android	Key	Attestation	Statement	Format	(2)
					*	7.5.	Android	SafetyNet	Attestation	Statement	Format	(2)					*	7.5.	Android	SafetyNet	Attestation	Statement	Format	(2)
					*	7.6.	FIDO	U2F	Attestation	Statement	Format	(2)					*	7.6.	FIDO	U2F	Attestation	Statement	Format	(2)

			#enumdef-scopedcredentialtypeReferenced	in:			#enumdef-scopedcredentialtypeReferenced	in:
					*	4.1.1.	Create	a	new	credential	(makeCredential()	method)					*	4.1.1.	Create	a	new	credential	(makeCredential()	method)
					*	4.4.	Parameters	for	Credential	Generation	(dictionary					*	4.4.	Parameters	for	Credential	Generation	(dictionary
							ScopedCredentialParameters)							ScopedCredentialParameters)
					*	4.9.2.	Credential	Type	enumeration	(enum	ScopedCredentialType)					*	4.9.2.	Credential	Type	enumeration	(enum	ScopedCredentialType)
					*	4.9.3.	Unique	Identifier	for	Credential	(interface					*	4.9.3.	Unique	Identifier	for	Credential	(interface
							ScopedCredential)	(2)							ScopedCredential)	(2)
					*	4.9.4.	Credential	Descriptor	(dictionary					*	4.9.4.	Credential	Descriptor	(dictionary
							ScopedCredentialDescriptor)							ScopedCredentialDescriptor)
					*	5.1.1.	The	authenticatorMakeCredential	operation	(2)	(3)					*	5.1.1.	The	authenticatorMakeCredential	operation	(2)	(3)

			#scopedcredentialReferenced	in:			#scopedcredentialReferenced	in:
					*	4.6.	Web	Authentication	Assertion	(interface					*	4.6.	Web	Authentication	Assertion	(interface
							AuthenticationAssertion)							AuthenticationAssertion)
					*	4.9.3.	Unique	Identifier	for	Credential	(interface					*	4.9.3.	Unique	Identifier	for	Credential	(interface
							ScopedCredential)							ScopedCredential)
					*	4.9.4.	Credential	Descriptor	(dictionary					*	4.9.4.	Credential	Descriptor	(dictionary
							ScopedCredentialDescriptor)							ScopedCredentialDescriptor)
					*	5.1.1.	The	authenticatorMakeCredential	operation	(2)					*	5.1.1.	The	authenticatorMakeCredential	operation	(2)

			#dictdef-scopedcredentialdescriptorReferenced	in:			#dictdef-scopedcredentialdescriptorReferenced	in:
					*	4.5.	Additional	options	for	Credential	Generation	(dictionary					*	4.5.	Additional	options	for	Credential	Generation	(dictionary
							ScopedCredentialOptions)							ScopedCredentialOptions)
					*	4.7.	Additional	options	for	Assertion	Generation	(dictionary					*	4.7.	Additional	options	for	Assertion	Generation	(dictionary
							AssertionOptions)							AssertionOptions)
					*	4.9.4.	Credential	Descriptor	(dictionary					*	4.9.4.	Credential	Descriptor	(dictionary
							ScopedCredentialDescriptor)							ScopedCredentialDescriptor)

			#enumdef-transportReferenced	in:			#enumdef-transportReferenced	in:
					*	4.9.4.	Credential	Descriptor	(dictionary					*	4.9.4.	Credential	Descriptor	(dictionary
							ScopedCredentialDescriptor)							ScopedCredentialDescriptor)

			#authenticatormakecredentialReferenced	in:			#authenticatormakecredentialReferenced	in:
					*	3.	Terminology	(2)					*	3.	Terminology	(2)
					*	4.1.1.	Create	a	new	credential	(makeCredential()	method)					*	4.1.1.	Create	a	new	credential	(makeCredential()	method)
					*	5.1.3.	The	authenticatorCancel	operation	(2)					*	5.1.3.	The	authenticatorCancel	operation	(2)
					*	8.	WebAuthn	Extensions					*	8.	WebAuthn	Extensions
					*	8.2.	Defining	extensions					*	8.2.	Defining	extensions

			#authenticatorgetassertionReferenced	in:			#authenticatorgetassertionReferenced	in:
					*	3.	Terminology	(2)					*	3.	Terminology	(2)
					*	4.1.2.	Use	an	existing	credential	(getAssertion()	method)					*	4.1.2.	Use	an	existing	credential	(getAssertion()	method)
					*	5.1.3.	The	authenticatorCancel	operation	(2)					*	5.1.3.	The	authenticatorCancel	operation	(2)
					*	5.2.1.	Authenticator	data					*	5.2.1.	Authenticator	data

70/72



/Users/jehodges/Documents/work/standards/W3C/webauthn/index-vgb-u2f-attestation-0d0fcea.txt,	Top	line:	4332

					*	5.2.3.	Generating	a	signature					*	5.2.3.	Generating	a	signature
					*	8.	WebAuthn	Extensions					*	8.	WebAuthn	Extensions
					*	8.2.	Defining	extensions					*	8.2.	Defining	extensions

			#authenticatorcancelReferenced	in:			#authenticatorcancelReferenced	in:
					*	4.1.1.	Create	a	new	credential	(makeCredential()	method)	(2)	(3)					*	4.1.1.	Create	a	new	credential	(makeCredential()	method)	(2)	(3)
					*	4.1.2.	Use	an	existing	credential	(getAssertion()	method)	(2)	(3)					*	4.1.2.	Use	an	existing	credential	(getAssertion()	method)	(2)	(3)

			#authenticatordataReferenced	in:			#authenticatordataReferenced	in:
					*	5.1.1.	The	authenticatorMakeCredential	operation	(2)					*	5.1.1.	The	authenticatorMakeCredential	operation	(2)
					*	5.1.2.	The	authenticatorGetAssertion	operation	(2)	(3)					*	5.1.2.	The	authenticatorGetAssertion	operation	(2)	(3)
					*	5.2.1.	Authenticator	data	(2)					*	5.2.1.	Authenticator	data	(2)
					*	5.2.2.	Attestation	data					*	5.2.2.	Attestation	data
					*	5.2.3.	Generating	a	signature	(2)	(3)					*	5.2.3.	Generating	a	signature	(2)	(3)
					*	5.2.4.	Verifying	a	signature					*	5.2.4.	Verifying	a	signature
					*	5.3.1.	Attestation	Statement	Formats	(2)					*	5.3.1.	Attestation	Statement	Formats	(2)
					*	5.3.3.	Generating	an	Attestation	Object	(2)					*	5.3.3.	Generating	an	Attestation	Object	(2)
					*	5.3.4.3.	Attestation	Certificate	Hierarchy					*	5.3.4.3.	Attestation	Certificate	Hierarchy
					*	7.2.	Packed	Attestation	Statement	Format	(2)	(3)	(4)	(5)	(6)	(7)					*	7.2.	Packed	Attestation	Statement	Format	(2)	(3)	(4)	(5)	(6)	(7)
							(8)	(9)							(8)	(9)							(8)	(9)
					*	7.3.	TPM	Attestation	Statement	Format	(2)	(3)	(4)					*	7.3.	TPM	Attestation	Statement	Format	(2)	(3)	(4)
					*	7.4.	Android	Key	Attestation	Statement	Format	(2)	(3)	(4)	(5)					*	7.4.	Android	Key	Attestation	Statement	Format	(2)	(3)	(4)	(5)
					*	7.5.	Android	SafetyNet	Attestation	Statement	Format	(2)					*	7.5.	Android	SafetyNet	Attestation	Statement	Format	(2)
					*	7.6.	FIDO	U2F	Attestation	Statement	Format	(2)	(3)					*	7.6.	FIDO	U2F	Attestation	Statement	Format	(2)	(3)
					*	8.	WebAuthn	Extensions	(2)					*	8.	WebAuthn	Extensions	(2)
					*	8.2.	Defining	extensions	(2)					*	8.2.	Defining	extensions	(2)
					*	8.5.	Extending	authenticator	processing	(2)					*	8.5.	Extending	authenticator	processing	(2)
					*	8.6.	Example	extension					*	8.6.	Example	extension
					*	9.5.	User	Verification	Index	(UVI)	Extension					*	9.5.	User	Verification	Index	(UVI)	Extension
					*	9.6.	Location	Extension					*	9.6.	Location	Extension
					*	9.7.	User	Verification	Mode	(UVM)	Extension					*	9.7.	User	Verification	Mode	(UVM)	Extension

			#attestation-statement-formatReferenced	in:			#attestation-statement-formatReferenced	in:
					*	3.	Terminology					*	3.	Terminology
					*	4.2.	Information	about	Scoped	Credential	(interface					*	4.2.	Information	about	Scoped	Credential	(interface
							ScopedCredentialInfo)							ScopedCredentialInfo)
					*	5.3.3.	Generating	an	Attestation	Object	(2)					*	5.3.3.	Generating	an	Attestation	Object	(2)

			#attestation-typeReferenced	in:			#attestation-typeReferenced	in:
					*	3.	Terminology					*	3.	Terminology

			#basic-attestationReferenced	in:			#basic-attestationReferenced	in:
					*	5.3.4.1.	Privacy					*	5.3.4.1.	Privacy

			#self-attestationReferenced	in:			#self-attestationReferenced	in:
					*	3.	Terminology	(2)	(3)	(4)					*	3.	Terminology	(2)	(3)	(4)
					*	5.3.	Credential	Attestation					*	5.3.	Credential	Attestation
					*	5.3.4.2.	Attestation	Certificate	and	Attestation	Certificate	CA					*	5.3.4.2.	Attestation	Certificate	and	Attestation	Certificate	CA
							Compromise							Compromise

			#privacy-caReferenced	in:			#privacy-caReferenced	in:
					*	5.3.4.1.	Privacy					*	5.3.4.1.	Privacy

			#direct-anonymous-attestationReferenced	in:			#direct-anonymous-attestationReferenced	in:
					*	5.3.4.1.	Privacy					*	5.3.4.1.	Privacy

			#atttobesignedReferenced	in:			#atttobesignedReferenced	in:
					*	5.3.3.	Generating	an	Attestation	Object					*	5.3.3.	Generating	an	Attestation	Object

			#attestation-format-identifierReferenced	in:			#attestation-format-identifierReferenced	in:
					*	5.3.1.	Attestation	Statement	Formats					*	5.3.1.	Attestation	Statement	Formats
					*	5.3.3.	Generating	an	Attestation	Object					*	5.3.3.	Generating	an	Attestation	Object

/Users/jehodges/Documents/work/standards/W3C/webauthn/index-vgb-u2f-attestation-dc90eab.txt,	Top	line:	4320

					*	5.2.3.	Generating	a	signature					*	5.2.3.	Generating	a	signature
					*	8.	WebAuthn	Extensions					*	8.	WebAuthn	Extensions
					*	8.2.	Defining	extensions					*	8.2.	Defining	extensions

			#authenticatorcancelReferenced	in:			#authenticatorcancelReferenced	in:
					*	4.1.1.	Create	a	new	credential	(makeCredential()	method)	(2)	(3)					*	4.1.1.	Create	a	new	credential	(makeCredential()	method)	(2)	(3)
					*	4.1.2.	Use	an	existing	credential	(getAssertion()	method)	(2)	(3)					*	4.1.2.	Use	an	existing	credential	(getAssertion()	method)	(2)	(3)

			#authenticatordataReferenced	in:			#authenticatordataReferenced	in:
					*	5.1.1.	The	authenticatorMakeCredential	operation	(2)					*	5.1.1.	The	authenticatorMakeCredential	operation	(2)
					*	5.1.2.	The	authenticatorGetAssertion	operation	(2)	(3)					*	5.1.2.	The	authenticatorGetAssertion	operation	(2)	(3)
					*	5.2.1.	Authenticator	data	(2)					*	5.2.1.	Authenticator	data	(2)
					*	5.2.2.	Attestation	data					*	5.2.2.	Attestation	data
					*	5.2.3.	Generating	a	signature	(2)	(3)					*	5.2.3.	Generating	a	signature	(2)	(3)
					*	5.2.4.	Verifying	a	signature					*	5.2.4.	Verifying	a	signature
					*	5.3.1.	Attestation	Statement	Formats	(2)					*	5.3.1.	Attestation	Statement	Formats	(2)
					*	5.3.3.	Generating	an	Attestation	Object	(2)					*	5.3.3.	Generating	an	Attestation	Object	(2)
					*	5.3.4.3.	Attestation	Certificate	Hierarchy					*	5.3.4.3.	Attestation	Certificate	Hierarchy
					*	7.2.	Packed	Attestation	Statement	Format	(2)	(3)	(4)	(5)	(6)	(7)					*	7.2.	Packed	Attestation	Statement	Format	(2)	(3)	(4)	(5)	(6)	(7)
							(8)							(8)
					*	7.3.	TPM	Attestation	Statement	Format	(2)	(3)	(4)					*	7.3.	TPM	Attestation	Statement	Format	(2)	(3)	(4)
					*	7.4.	Android	Key	Attestation	Statement	Format	(2)	(3)	(4)	(5)					*	7.4.	Android	Key	Attestation	Statement	Format	(2)	(3)	(4)	(5)
					*	7.5.	Android	SafetyNet	Attestation	Statement	Format	(2)					*	7.5.	Android	SafetyNet	Attestation	Statement	Format	(2)
					*	7.6.	FIDO	U2F	Attestation	Statement	Format	(2)	(3)					*	7.6.	FIDO	U2F	Attestation	Statement	Format	(2)	(3)
					*	8.	WebAuthn	Extensions	(2)					*	8.	WebAuthn	Extensions	(2)
					*	8.2.	Defining	extensions	(2)					*	8.2.	Defining	extensions	(2)
					*	8.5.	Extending	authenticator	processing	(2)					*	8.5.	Extending	authenticator	processing	(2)
					*	8.6.	Example	extension					*	8.6.	Example	extension
					*	9.5.	User	Verification	Index	(UVI)	Extension					*	9.5.	User	Verification	Index	(UVI)	Extension
					*	9.6.	Location	Extension					*	9.6.	Location	Extension
					*	9.7.	User	Verification	Mode	(UVM)	Extension					*	9.7.	User	Verification	Mode	(UVM)	Extension

			#attestation-statement-formatReferenced	in:			#attestation-statement-formatReferenced	in:
					*	3.	Terminology					*	3.	Terminology
					*	4.2.	Information	about	Scoped	Credential	(interface					*	4.2.	Information	about	Scoped	Credential	(interface
							ScopedCredentialInfo)							ScopedCredentialInfo)
					*	5.3.3.	Generating	an	Attestation	Object	(2)					*	5.3.3.	Generating	an	Attestation	Object	(2)

			#attestation-typeReferenced	in:			#attestation-typeReferenced	in:
					*	3.	Terminology					*	3.	Terminology

			#basic-attestationReferenced	in:			#basic-attestationReferenced	in:
					*	5.3.4.1.	Privacy					*	5.3.4.1.	Privacy

			#self-attestationReferenced	in:			#self-attestationReferenced	in:
					*	3.	Terminology	(2)	(3)	(4)					*	3.	Terminology	(2)	(3)	(4)
					*	5.3.	Credential	Attestation					*	5.3.	Credential	Attestation
					*	5.3.4.2.	Attestation	Certificate	and	Attestation	Certificate	CA					*	5.3.4.2.	Attestation	Certificate	and	Attestation	Certificate	CA
							Compromise							Compromise

			#privacy-caReferenced	in:			#privacy-caReferenced	in:
					*	5.3.4.1.	Privacy					*	5.3.4.1.	Privacy

			#direct-anonymous-attestationReferenced	in:			#direct-anonymous-attestationReferenced	in:
					*	5.3.4.1.	Privacy					*	5.3.4.1.	Privacy

			#attestation-format-identifierReferenced	in:			#attestation-format-identifierReferenced	in:
					*	5.3.1.	Attestation	Statement	Formats					*	5.3.1.	Attestation	Statement	Formats
					*	5.3.3.	Generating	an	Attestation	Object					*	5.3.3.	Generating	an	Attestation	Object

71/72



/Users/jehodges/Documents/work/standards/W3C/webauthn/index-vgb-u2f-attestation-0d0fcea.txt,	Top	line:	4394

			#client-argumentReferenced	in:			#client-argumentReferenced	in:
					*	8.3.	Extending	request	parameters					*	8.3.	Extending	request	parameters

			#contentReferenced	in:			#contentReferenced	in:
					*	9.2.	Transaction	authorization	(2)	(3)	(4)	(5)					*	9.2.	Transaction	authorization	(2)	(3)	(4)	(5)

			#typedefdef-aaguidReferenced	in:			#typedefdef-aaguidReferenced	in:
					*	9.3.	Authenticator	Selection	Extension					*	9.3.	Authenticator	Selection	Extension

/Users/jehodges/Documents/work/standards/W3C/webauthn/index-vgb-u2f-attestation-dc90eab.txt,	Top	line:	4379

			#client-argumentReferenced	in:			#client-argumentReferenced	in:
					*	8.3.	Extending	request	parameters					*	8.3.	Extending	request	parameters

			#contentReferenced	in:			#contentReferenced	in:
					*	9.2.	Transaction	authorization	(2)	(3)	(4)	(5)					*	9.2.	Transaction	authorization	(2)	(3)	(4)	(5)

			#typedefdef-aaguidReferenced	in:			#typedefdef-aaguidReferenced	in:
					*	9.3.	Authenticator	Selection	Extension					*	9.3.	Authenticator	Selection	Extension

72/72


